www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Gleitpunktarithmetik
Gleitpunktarithmetik < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitpunktarithmetik: Rundung
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 18.10.2005
Autor: Britta82

Hi,

ich stehe bei einer total einfachen Aufgabe auf dem Schlauch. Also

Sei [mm] x=0.\alpha_{1}\alpha_{2}.......10^{n} [/mm]
Eine Möglichkeit zu runden ist: rd~_{t}(x):= [mm] \pm 0.\alpha_{}\alpha_{2}....\alpha_{t}*10^{n}, [/mm] das Abschneiden der Manitsse nach der t-ten Stelle.

Berechnen sie ien grobe obere Schranke für den relativen Rundungsfehler.

Also wenn ich [mm] rd_{t}(x)-x [/mm] rechne und erst mal den absoluten Fehler berechne bekomme ich ja [mm] \pm0.0000000.\alpha_{t+1}.....10^{n} [/mm]
das müsste ich irgendwie abschätzen um den relativen Fehler abschätzen zu können. Ist das zufällig kleiner als [mm] 9*10^{n-t}? [/mm]

Dann wäre der relative Fehler doch kleiner als [mm] 9*10^{-t} [/mm]

Ist das korrekt?

LG

Britta

        
Bezug
Gleitpunktarithmetik: Beispiel
Status: (Antwort) fertig Status 
Datum: 19:24 Mi 19.10.2005
Autor: mathemaduenn

Hallo Britta,
Um einen großen relativen Fehler zu erhalten muß die Zahl klein und der Fehler groß sein.
Bsp.:
t=4 und Zehn Ziffern
x=0.10009999999999999999999999999999999999999
rd(x)=0.1
Fehler=0.0000999999999...  [mm] \approx [/mm] 0.0001
rel. Fehler = [mm] \bruch{0.0001}{0.1001} \approx 10^{-3} [/mm]
Alles klar?
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]