www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Gleitpunktarithmetik
Gleitpunktarithmetik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitpunktarithmetik: n-stellig
Status: (Frage) überfällig Status 
Datum: 14:09 Fr 24.02.2012
Autor: Jack159

Aufgabe
Es soll 2590+4+4 in 3 stelliger Gleitpunktarithmetik (Dezimalsystem) gerechnet werden. Einmal von links nach rechts und einmal von rechts nach links.

Hallo,

Die Lösung der Aufgabe lautet:

Alle 3 Summanden sind exakt darstellbar. Als Ergebnis erhält man, bei Rechnung von links nach rechts:
2590+4=2594 runden = 2590
2590+4=2594 runden = 2590

Andersherum:
4+4=8 runden = 8
8+2590=2598 runden = 2600



Nun meine Frage:
Die Rechnungen verstehe ich ja. Aber in der Aufgabe ist doch von "3 stelliger Gleitpunktarithmetik" die Rede. Also in Form von z.b. 0.z1z2z3 * [mm] B^E [/mm]
2590 ist jedoch eine 4 stellige Zahl bzw. in Gleitpunktdarstellung eine 4 stellige Gleitpunktzahl.
Da unser "System" auf dem wir diese Rechnung ausführen aber nur Platz für max. 3 Stellen hat, kann er doch garnicht die 2590 darstellen? Auch runden macht doch keinen Sinn, da nur 3 Stellen zur Verfügung stehen?
Und wieso wird die Zahl 2590 als 3-stellig bezeichnet? O.o

0.259 ist ja 3-stellig
[mm] 0.2590*10^4 [/mm] ist doch 4-stellig?




        
Bezug
Gleitpunktarithmetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Fr 24.02.2012
Autor: wieschoo

Hi,

da es dich vielleicht nur ermuntert. Wir haben damals immer erst das Ergebnis exakt berechnet

[mm] 0.2590*10^4 [/mm] + [mm] 0.4*10^1=0.2594*10^4 [/mm]

und dann gibt es zwei Möglichkeiten:

symmetrisches Runden
hier wird dann abgerundet

assymmetrisches Runden (abschneiden)
0.2594 -> 0.259|4 = 0.259

Unabhängig von dem 3er, 4er ,n-er Gleitpunktsystem wird jede Operation exakt berechnet und dann durch das Runden das Maschinenrechnen "simuliert".

Nicht destotrotz erhält man
0.259 * [mm] 10^4 [/mm]

was natürlich 2590 entspricht.

Bezug
        
Bezug
Gleitpunktarithmetik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 26.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]