www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Gleichverteilung
Gleichverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 07.01.2008
Autor: mathe-tu-muenchen

Aufgabe
Gegeben ist eine gleichverteilte Zufallsvariable X auf dem Intervall [mm] [0,\bruch{\pi}{4}]. [/mm] Berechnen Sie die Verteilungsfunktion und die Dichtefunktion von Y = 2X+5.

Hallo!

Ich habe hier schon ziemlich lang gerätselt und bin draufgekommen, dass gleichverteilt folgendes bedeutet:

[mm] f(x)=\left\{\begin{matrix} 0, & \mbox{wenn }x \le 0 \\ \bruch{4}{\pi}, & \mbox{wenn }0 < x < \bruch{\pi}{4} \\ 0, & \mbox{wenn }x \re 0 \end{matrix}\right. [/mm]

Ich habe also die Dichtefunktion der Zufallsvariable X schon gegeben. Nur wie bekomme ich jetzt die Funktionen für Y?

Kann mir hier bitte jemand einen kleinen Tip geben? Ich glaube es ist nicht schwer und ich brauche nur mehr einen kleinen Anstoß damit ich es schaffe!

        
Bezug
Gleichverteilung: Ein Tipp
Status: (Antwort) fertig Status 
Datum: 12:08 Di 08.01.2008
Autor: Infinit

Hallo,
bei solch einer Abbildung, die linear und monoton ist, bildet man einen kleinen Bereich der x-Verteilung mit Hilfe der Abbildungsvorschrift auf den y-Bereich ab.
$$ [mm] f_{Y}(y) [/mm] = [mm] \bruch{f_X (x)}{| g^{'}(x)|} [/mm] $$

Eine recht schöne Zusammenfassung habe ich []hier gefunden.
Viele Grüße,
Infinit

Bezug
                
Bezug
Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 08.01.2008
Autor: mathe-tu-muenchen

Super! Danke für die Antwort.

Ich habe mal versucht ein leichtes Beispiel für den Einstieg zum rechnen:

X ist gleichverteilt im Intervall [-1,1]. Ich möchte mir jetzt die Dichte von [mm] X^2 [/mm] ausrechnen:

Dafür habe ich mir einmal f(x) ausgerechnet:

[mm] f(x)=\left\{\begin{matrix} 0 & \mbox{wenn} x \le -1 ; x \ge 1 \\ \bruch{1}{2} & \mbox{wenn } -1 < x < 1 \end{matrix}\right. [/mm]

Jetzt definiere ich Y = g(x) = [mm] X^2 [/mm]

und leite ab: g'(x) = 2x

Umkehrfunktion: [mm] g^{-1}(y) [/mm] = [mm] \wurzel{y} [/mm]

und die neue Dichte lautet:

[mm] f(y)=\left\{\begin{matrix} 0 & \mbox{wenn} x \le -1 ; x \ge 1 \\ \bruch{1}{4 \wurzel{y}} & \mbox{wenn } -1 < x < 1 \end{matrix}\right. [/mm]

Ist das so konzeptionell richtig? Danke!

Bezug
                        
Bezug
Gleichverteilung: Fast
Status: (Antwort) fertig Status 
Datum: 17:17 Di 08.01.2008
Autor: Infinit

Für das lineare Beispiel der eigentlichen Aufgabe ist die Vorgehensweise richtig, für das hier gewählte Beispiel einer quadratischen Übertragungsfunktion jedoch leider nicht, da nicht berücksichtigt wurde, dass durch die quadratische Abbildung und den Definitionsbereich der x-Werte, der auch negative Werte enthält, jeweils 2 x-Werte auf den gleichen y-Wert abgebildet werden. Die hierbei entstehenden Einzelbeiträge müssen addiert werden. Die Vorgehensweise für solch eine Abbildungsvorschrift findet man im oben erwähnen Skript ab Seite 12.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]