www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Gleichungssystem von Matrizen
Gleichungssystem von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem von Matrizen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:50 So 03.11.2013
Autor: Lisaa25

Hallo liebe Mathe-Freunde,

ich habe bei einem Beweis von meiner Seminararbeit einen Schritt nicht vollständig nachvollziehen können. Vielleicht kann mir ja einer von Euch weiterhelfen.
Und zwar habe ich die Matrizen
[mm] A\in\IR^{n\times n}, A=A^T, A \mbox{ positiv definit und } A=B+HH^T, \mbox{ wobei } B\in\IR^{n\times n}, B=B^T \mbox{ und positiv definit}, H\in\IR^{n\times m} [/mm] und die Spaltenvektoren von H sind linear unabhängig.
Das müssten soweit alle Eigenschaften sein, wobei ich mir nicht sicher bin ob sie alle für den Beweis benötigt werden.
Es wird behauptet, falls alle folgenden inverse Matrizen existieren, dann gilt:
[mm] (H^TA^{-1}H)^{-1}-E = (H^TB^{-1}H)^{-1}[/mm], wobei E die Einheitsmatrix im [mm]\IR^{n\times n}[/mm] sei.
Für den Fall [mm] m=n [/mm] ist dies ja ganz leicht nachzurechnen, aber für [mm]m\not=n[/mm] komme ich nicht darauf, wie man es zeigen soll.
Es wäre super, wenn Ihr mir weiterhelfen könntet!

Viele Grüße
Lisa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungssystem von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 So 03.11.2013
Autor: wieschoo

(Ich habe mir es jetzt dreimal durchgelesen)

Man benötigt(DAS IST DER TIPP):
[mm](E+A^{-1})^{-1}=A(A+E)^{-1}[/mm] (*) und [mm]A-B=HH^T[/mm]


Beweis ist die (hoffentlich fehlerfreie) Rechnung
[mm]\qquad H^TB^{-1}H = H^TB^{-1}H[/mm]
[mm]\implies H^TB^{-1}H -H^TA^{-1}H+H^TA^{-1}H= H^TB^{-1}H[/mm]          (intelligente Null)
[mm]\implies H^T\left( A^{-1}AB^{-1} - A^{-1}BB^{-1} \right)H+H^TA^{-1}H= H^TB^{-1}H[/mm]    (Matrixmul. ist distrib. in H)
[mm]\implies H^TA^{-1}\left( A - B \right)B^{-1}H+H^TA^{-1}H= H^TB^{-1}H[/mm]          (Matrixmul. ist distrib. in A,B)
[mm]\implies H^TA^{-1}\left( HH^T \right)B^{-1}H+H^TA^{-1}H= H^TB^{-1}H[/mm]          (eine der benötigten Gleichungen)
[mm]\implies H^TA^{-1}HH^TB^{-1}H+H^TA^{-1}H= H^TB^{-1}H[/mm]            (Matrixmul. ist assoz.)
[mm]\implies H^TA^{-1}H\left(H^TB^{-1}H+E\right)= H^TB^{-1}H[/mm]                (wieder ausklammern)
[mm]\implies H^TA^{-1}H= H^TB^{-1}H\left(H^TB^{-1}H+E\right)^{-1}[/mm]               (falls Inverse existiert!)
[mm]\implies H^TA^{-1}H= \left(H^TB^{-1}H\right)^{-1}+E[/mm]                    (nach obiger Gleichung *)

Falls die Inverse nicht existiert, kann man natürlich keine Aussage machen. Aber mit
> Es wird behauptet, falls alle folgenden inverse Matrizen existieren,
​Hast du mir einen Freifahrtschein gemacht.

Interessant wäre es zu wissen, ob es eleganter geht, da die Form irgendwie der Woodbury matrix identity ähnelt (Bezug [mm] $A=B+HH^T$). [/mm]

Bezug
                
Bezug
Gleichungssystem von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:07 Mo 04.11.2013
Autor: Lisaa25

Hi wischoo :)
danke für deine Hilfe und den ausführlichen Beweis!
Das sieht alles sehr gut aus, nur woher kommt der Tipp (*) ?
Ist das eine allgemein gültige Formel?
Die Woodbury-Matrix-Identität war mir vorher auch noch nicht bekannt, ich werde es damit auch nochmal versuchen.

PS: In der letzten Zeile von deinem Beweis fehlt ein [mm] (...)^{-1}[/mm]

Bezug
                        
Bezug
Gleichungssystem von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 04.11.2013
Autor: fred97


> Hi wischoo :)
>  danke für deine Hilfe und den ausführlichen Beweis!
>  Das sieht alles sehr gut aus, nur woher kommt der Tipp (*)
> ?
> Ist das eine allgemein gültige Formel?

Ja, der Beweis ist sehr einfach

FRED

>  Die Woodbury-Matrix-Identität war mir vorher auch noch
> nicht bekannt, ich werde es damit auch nochmal versuchen.  


Bezug
                                
Bezug
Gleichungssystem von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Mo 04.11.2013
Autor: Lisaa25

Ok, hast recht. Dumme Frage...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]