Gleichungssystem lösen < Mathe-Software < Mathe < Vorhilfe
|
Aufgabe | Lösung des Gleichungssystems mit Gausschem Eliminationsverfahren.
[mm] \[tx−\mathrm{sin}\left( \phi\right) \,ry+\mathrm{cos}\left( \phi\right) \,rx−px+my\,\mathrm{sin}\left( \phi\right) −mx\,\mathrm{cos}\left( \phi\right) +2\,mx=0\]
[/mm]
[mm] \[ty+\mathrm{cos}\left( \phi\right) \,ry+\mathrm{sin}\left( \phi\right) \,rx−py−mx\,\mathrm{sin}\left( \phi\right) −my\,\mathrm{cos}\left( \phi\right) +2\,my=0\]
[/mm]
[mm] \[−2\,\mathrm{sin}\left( \phi\right) \,ry\,ty+2\,\mathrm{cos}\left( \phi\right) \,rx\,ty+2\,my\,\mathrm{sin}\left( \phi\right) \,ty−2\,mx\,\mathrm{cos}\left( \phi\right) \,ty−2\,\mathrm{cos}\left( \phi\right) \,ry\,tx−2\,\mathrm{sin}\left( \phi\right) \,rx\,tx+2\,mx\,\mathrm{sin}\left( \phi\right) \,tx+2\,my\,\mathrm{cos}\left( \phi\right) \,tx+2\,\mathrm{sin}\left( \phi\right) \,py\,ry+2\,\mathrm{cos}\left( \phi\right) \,px\,ry−4\,my\,\mathrm{sin}\left( \phi\right) \,ry−4\,mx\,\mathrm{cos}\left( \phi\right) \,ry−2\,\mathrm{cos}\left( \phi\right) \,py\,rx+2\,\mathrm{sin}\left( \phi\right) \,px\,rx−4\,mx\,\mathrm{sin}\left( \phi\right) \,rx+4\,my\,\mathrm{cos}\left( \phi\right) \,rx−2\,my\,\mathrm{sin}\left( \phi\right) \,py+2\,mx\,\mathrm{cos}\left( \phi\right) \,py−2\,mx\,\mathrm{sin}\left( \phi\right) \,px−2\,my\,\mathrm{cos}\left( \phi\right) \,px+4\,{my}^{2}\,\mathrm{sin}\left( \phi\right) +4\,{mx}^{2}\,\mathrm{sin}\left( \phi\right) =0\]
[/mm]
[mm] \[{\mathrm{sin}\left( \phi\right) }^{2}+{\mathrm{cos}\left( \phi\right) }^{2}−1=0\] [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vorneweg: Ich habe eine Gleichung aufgestellt welche ich nach den unbekannten abgeleitet habe mit wxmaxima. Jetzt hab ich natürlich ein Gleichungssystem aufgestellt welches Maxima auch lösen kann. Das ganze soll jetzt in Software gegossen werden. Dazu habe ich einen Gleichungslöser nach Gauss implementiert welcher auch funktioniert.
Das Problem:
Die Gleichung 3 im obigen System enthält Summanden wie
[mm] \[2\,\mathrm{sin}\left( \phi\right) \,rx\,ty\]
[/mm]
welche 2 unbekannte, sin(phi) und ty multiplizieren. Gleichungssystem mit Gleichungen nach dem Schema
[mm] \[a\,{x}^{3}+b\,{x}^{2}+c\,x+d=0\]
[/mm]
lassen sich natürlich lösen da die unbekannten a/b/c/d nicht multipliziert werden.
Wie kann ich vorgehen um die Terme [mm] \[2\,\mathrm{cos}\left( \phi\right) \,rx\,ty\] [/mm] mit dem Gausslöser zu erfassen?
Gruß
schorsch
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:38 Do 15.08.2013 | Autor: | chrisno |
Welches sind die gesuchten Größen, welches die gegebenen?
Sobald Du nicht mehr ein lineares Gleichungssystem hast, zum Beispiel weil da das Produkt zweier der gesuchten Größen vorkommt, sind die Methoden für lineare Gleichungssysteme nicht mehr adäquat. Du musst dann also in die Lösungsverfahren für nichtlineare Gleichungssysteme einsteigen.
|
|
|
|
|
Also die unbekannten sin tx,ty und phi. Folglich also sin(phi) und cos(phi). Mit dem Gleichungslöser nach Gauss brauch ich halt pro Spalte Faktor * unbekannte.
Welchen Typ von Gleichungslöser müsste man verwenden um Gleichungen wie
x * y + 5 = 0
3*x + 2*y + 3 = 0
also um das x * y zu lösen?
Manuell würde ich halt die untere Gleichung nach y auflösen und oben einsetzten. Oder halt umgekehrt. Aber wie heist der Algorithmus mit dem man dies dem Computer beibringen kann?
Gruß
schorsch
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:59 Do 15.08.2013 | Autor: | M.Rex |
Hallo
> Also die unbekannten sin tx,ty und phi. Folglich also
> sin(phi) und cos(phi).
Setze doch bitte vor den Index den Unterstrich _ und vor den griechischen Buchstaben einen Backslash, dann bekommst du [mm] t_x t_y [/mm] und [mm] \phi
[/mm]
> Mit dem Gleichungslöser nach Gauss
> brauch ich halt pro Spalte Faktor * unbekannte.
>
> Welchen Typ von Gleichungslöser müsste man verwenden um
> Gleichungen wie
> x * y + 5 = 0
> 3*x + 2*y + 3 = 0
>
> also um das x * y zu lösen?
> Manuell würde ich halt die untere Gleichung nach y
> auflösen und oben einsetzten. Oder halt umgekehrt. Aber
> wie heist der Algorithmus mit dem man dies dem Computer
> beibringen kann?
Das Verfahren nennt man Einsetzungsverfahren.
>
> Gruß
> schorsch
Marius
|
|
|
|