www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Gleichungssystem lösen
Gleichungssystem lösen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Sa 04.01.2014
Autor: Lukii1992

Aufgabe
Für die Sammlung von Altpapier soll eine quaderförmige, oben offene Kiste hergestellt werden. Die Länge soll das 1,5fache der Breite betragen. Sie soll 0,5 [mm] m^3 [/mm] fassen. Wie sind die Maße zu wählen, damit zur Herstellung der Kiste möglichst wenig Material verwendet wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe die Haupt- und Nebenbeziehungen aufgestellt und versuche nun, durch Einsetzen einen Wert einer Variable heraus zu bekommen, um diesen dann in die Hauptbeziehung einzusetzen (siehe Anhang). Allerdings funktioniert das nicht. Was muss ich machen?



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 04.01.2014
Autor: Sax

Hi,

es ist alles richtig, wenn auch sehr umständlich.

Löse die vorletzte Gleichung besser nach h auf : h = ...(mit Variabler l), benutze außerdem die Gleichung b = ... (mit Variabler l) von oben, setze alles in deine Flächenformel ein (da hast du übrigens einen Schreibfehler drin), erhalte A = ...(mit einziger Variablen l) und setze dann die übliche Vorgehensweise fort.

Gruß Sax.

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Sa 04.01.2014
Autor: Lukii1992

Danke schon mal!

Ich hatte bei den Extremwertaufgaben schon öfters Probleme an dieser Stelle, an der es um das Lösen des Gleichungssystems geht und vor allem auch darum, nach welchen Variablen man umstellt. Was kann man sich dafür grundsätzlich merken, wie man vorgehen muss?

Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Sa 04.01.2014
Autor: Sax

Hi,

eine deiner Nebenbedingungen ist doch l = 1,5b, da ist also schon mal gar nichts aufzulösen.
Die andere Nebenbedingung ist $ V = b*l*h = 0,5 $ ,  also $ [mm] 1,5*b^2*h [/mm] = 0,5 $. Nach welcher Variablen sollt diese zweite Nb nun aufgelöst werden ? Nach b oder nach h ?
Die Zielfunktion A enthält die Variablen l, b und h alle in der ersten Potenz (kein [mm] b^2), [/mm] das spricht dafür, nach h aufzulösen :  h=h(b) . Außerdem ist die erste Nebenbedingung schon eine Funktion mit der Variablen b, so dass ein Einsetzen in die Zielfunktion sofort möglich ist und A als Funktion der einzigen Variablen b ergibt.

Gruß Sax.

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Sa 04.01.2014
Autor: Lukii1992

Wie kann ich die Gleichung am Ende (siehe Anhang) in eine für die allgemeine Funktionsgleichung günstige Form bringen?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Sa 04.01.2014
Autor: M.Rex

Hallo

> Wie kann ich die Gleichung am Ende (siehe Anhang) in eine
> für die allgemeine Funktionsgleichung günstige Form
> bringen?

Ich nehme mal an, du suchst den Extrempunkt von
[mm] A(l)=\frac{2}{l}+\frac{l^{2}}{1,5} [/mm]

Mit Potenzgesetzen und Bruchrechnung bekommst du

[mm] A(l)=\frac{2}{l}+\frac{l^{2}}{1,5} [/mm]
[mm] =\frac{2}{l^{1}}+\frac{1}{1,5}l^{2} [/mm]
[mm] =2l^{-1}+\frac{2}{3}l^{2} [/mm]

Nun kannst du gemäß der Summenregel und der Potenzregel ableiten.

Marius

Bezug
                                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Sa 04.01.2014
Autor: Lukii1992

Wie legt man den Definitionsbereich fest bzw. geht das bei dieser Aufgabe überhaupt? Aus der Aufgabenstellung geht ja in keinster Weise hervor, in welchem Bereich eine der Längen liegen darf.

Bezug
                                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 04.01.2014
Autor: Sax

Hi,

Definitionsbereich für l, h und b sind doch offenbar alle positiven Zahlen.
Für diese ist automatisch gewährleistet, dass sich auch für A und V positive Werte ergeben.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]