www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gleichungssystem Lösen
Gleichungssystem Lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem Lösen: Idee
Status: (Frage) beantwortet Status 
Datum: 08:50 Sa 26.01.2013
Autor: Mathe_Hannes

Aufgabe
Bestimme die Variablen T1 und T2:

[mm] T1\sin [/mm] 28 + T2 [mm] \sin [/mm] 47 = 147       (1)

[mm] -T1\cos [/mm] 28 + T2 [mm] \cos [/mm] 47 = 0         (2)

Hi,

dieses Gleichungssystem sieht denkbar einfach aus aber irgendwie habe ich so meine Schwierigkeiten es zu lösen.

Habe versucht die Gleichung (2) nach T1 aufzulösen und das Ergebnis dann in (1) für den Ausdruck T1 einzusetzen.

Dann steht da:

(T2 [mm] \cos [/mm] 47 / cos 28 ) + T2 [mm] \sin [/mm] 47 = 147


Nun stecke ich aber fest und weiß nicht wie ich mit den ganzen Winkeln weiter rechnen soll, helft mir mal bitte auf die Sprünge.



Vielen Dank schonmal im vorraus,

Gruß Hannes

        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Sa 26.01.2013
Autor: Richie1401

Hallo Hannes,

zunächst: Das GLS sieht vermutlich ordentlich aufgeschrieben wie folgt aus:

[mm] \vmat{ T_1\sin(28)+T_2\sin(47)=147 \\ -T_1\cos(28)+T_2\cos(47)=0 } [/mm]

>  
> (T2 [mm]\cos[/mm] 47 / cos 28 ) + T2 [mm]\sin[/mm] 47 = 147

Du hast nun
[mm] T_2\frac{\cos(47}{\cos(28)}+T_2\sin(47)=147 [/mm]
[mm] !!!!\red{\text{Dies ist falsch! Bitte Edit unten beachten}}!!!! [/mm]

Klammer doch [mm] T_2 [/mm] aus und dividiere dann durch den entsprechnenden anderen Faktor. Ein vorheriges beiderseitiges Multiplizieren mit [mm] \cos(28) [/mm] verhindert übrigens einen hässlichen Doppelbruch. Da wird das alles ein bisschen "schöner".

>  
>
> Nun stecke ich aber fest und weiß nicht wie ich mit den
> ganzen Winkeln weiter rechnen soll, helft mir mal bitte auf
> die Sprünge.
>  
>
>
> Vielen Dank schonmal im vorraus,
>  
> Gruß Hannes

EDIT: Mir ist oben ein Fehler unterlaufen. Ich bitte um Entschuldigung!
Wir setzen ja [mm] T_1 [/mm] in die erste Gleichung ein. Damit bleibt natürlich [mm] \sin(28) [/mm] noch dort stehen.

Richtig ist also:
[mm] T_2\frac{\cos(47)\sin(28)}{\cos(28)}+T_2\sin(47)=147 [/mm]

Bezug
                
Bezug
Gleichungssystem Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Sa 26.01.2013
Autor: Mathe_Hannes

Vielen Dank für die schnelle Antwort:

Gute Idee, ich habe das gleich mal versucht wie du gesagt hast und komme dann auf golgendes Ergebnis.

Mit [mm] \cos [/mm] 28 multiplizieren und T2 ausklammern liefert:


T2 [mm] (\cos47 [/mm] + [mm] \sin47 \cos28) [/mm] = 147 [mm] \cos [/mm] 28


Durch die Klammer dividieren liefert:


T2 = 147 / ( [mm] \cos47 [/mm] + [mm] \sin47 [/mm] )


Mein Ergebnis ist aber leider falsch , da ich für : T2= 104 und für T1 = 134 erhalte...


Das Ergebnis is der Kurzlösung lautet aber : T1= 104 und T2= 134


hmm irgendwie komisch...weiß wer wo der fehler liegt?




Bezug
                        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Sa 26.01.2013
Autor: Richie1401

Moin moin,

> Vielen Dank für die schnelle Antwort:
>  
> Gute Idee, ich habe das gleich mal versucht wie du gesagt
> hast und komme dann auf golgendes Ergebnis.
>  
> Mit [mm]\cos[/mm] 28 multiplizieren und T2 ausklammern liefert:
>  
>
> T2 [mm](\cos47[/mm] + [mm]\sin47 \cos28)[/mm] = 147 [mm]\cos[/mm] 28
>  
>
> Durch die Klammer dividieren liefert:
>  
>
> T2 = 147 / ( [mm]\cos47[/mm] + [mm]\sin47[/mm] )

Wo ist [mm] \cos(28) [/mm] im Zähler geblieben? Und im Nenner fehlt doch auch noch was!

>  
>
> Mein Ergebnis ist aber leider falsch , da ich für : T2=
> 104 und für T1 = 134 erhalte...
>  
>
> Das Ergebnis is der Kurzlösung lautet aber : T1= 104 und
> T2= 134
>  
>
> hmm irgendwie komisch...weiß wer wo der fehler liegt?

Mal nebenbei gefragt: Wird hier in Grad oder Radian gerechnet?

>  
>
>  


Bezug
                                
Bezug
Gleichungssystem Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Sa 26.01.2013
Autor: Mathe_Hannes

Das bezieht sich alles auf Grad.

hmm kürt sich das nicht alles raus? So wie ichs da geschrieben hatte?

147 [mm] *\cos [/mm] 28 / [mm] ((\cos47 [/mm] + [mm] (\sin47 [/mm] / [mm] \cos28 [/mm] ))

ist doch das selbe wie das hier oder nicht?(nur halt gekürzt)

147 / ( $ [mm] \cos47 [/mm] $ + $ [mm] \sin47 [/mm] $ )



mfg

Bezug
                                        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 26.01.2013
Autor: Richie1401

Nein, da kürzt sich nix heraus. "Aus Differenzen und Summen kürzen nur die Dummen" - so heißt es zumindest.

Es ergibt sich doch nach Multiplikation mit [mm] \cos(28) [/mm] folgendes:

[mm] T_2(\cos(47)\sin(28)+\sin(47)\cos(28))=147\cos(28) [/mm]

Nach Division:

[mm] T_2=\frac{147\cos(28)}{\cos(47)\sin(28)+\sin(47)\cos(28)} [/mm]

Was soll sich denn da bitteschön kürzen?
So, die Lösung steht nun oben schon da. Also in den TR reinhacken und sich über das richtige Ergebnis freuen, dann nur noch [mm] T_2 [/mm] in die erste umgestellte Gleichung einsetzen, um [mm] T_1 [/mm] zu erhalten.

Bezug
                        
Bezug
Gleichungssystem Lösen: Fehler unterlaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Sa 26.01.2013
Autor: Richie1401

Mir ist oben ein Fehler unterlaufen, bitte schau dir meine erste Antwort noch einmal an.

Bezug
                                
Bezug
Gleichungssystem Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Sa 26.01.2013
Autor: Mathe_Hannes

Ahja, naja ist noch früh- war außerdem mein fehler :=)


Ich bin jetzt total verwirrt, kannst du vielleicht den rechenschritt mal hinschreiben wie das aussehen muss wenn ich jetzt :

(2) nach T1 auflösen und das Ergebnis dann in (1) für den Ausdruck T1 einsetzen


Danach dann mit cos 28 multiplizieren und T2 ausklammern


Dann alles rüber auf die rechte seite so das dann da steht :

T2 = ..irgendwas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]