www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichungen
Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mo 23.08.2004
Autor: pikachu

Ich habe diese Frage in keinem weiteren Forum gestellt.
Danke für die Antwort. Hab aber bei folgender Aufgabe auch keinen Schimmer:

2/3x-1/3=1/2-(1/4-1/6x)

Danke für die Hilfe

        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 23.08.2004
Autor: informix

Hallo pikachu,

> Ich habe diese Frage in keinem weiteren Forum gestellt.
>  Danke für die Antwort. Hab aber bei folgender Aufgabe auch
> keinen Schimmer:
>  
> 2/3x-1/3=1/2-(1/4-1/6x)
>  

Du möchtest also die Gleichung
[mm] \bruch{2}{3} x - \bruch{1}{3} = \bruch{1}{2} - (\bruch{1}{4}-\bruch{1}{6}x)[/mm]
nach x auflösen?
Dann denke mal an die verschiedenen Rechenregeln:
Klammern auflösen, alle Terme mit der Variablen auf eine Seite sortieren, die ohne Variable auf die andere Seite der Gleichung und zusammenfassen. Dabei zunächst die Brüche einer Seite gleichnamig machen!
Zum Schluss die ganze Gleichung mit dem Kehrbruch des Bruchs vor dem x multiplizieren:
und schon ist die Gleichung gelöst.
Versuchst du es mal und zeigst uns dein Ergebnis, damit wir sehen, wo es noch klemmt?

Wenn du eine Regeln hier nicht verstehst, bitte nachfragen...


Bezug
                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mo 23.08.2004
Autor: pikachu

Ich versuchs mal:

2/3x-1/3=1/2-(1/4-1/6x)
2/3x-1/3=1/2-1/4+1/6x   [mm] \-1/6x [/mm]
2/3x-1/3-1/6x=1/2-1/4     [mm] \+1/3 [/mm]
2/3x-1/6x=1/2-1/4-1/3      
3/6x=-1/12
x=-1/6


Bezug
                        
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Mo 23.08.2004
Autor: Archimedis_mR

hi,
du hast in deiner Aufgabe beim Umformen die -1/3 Falsch rübergebracht.....
Wenn du es rüberbringst wird die -1/3 zu +1/3.....

Überdenke deine Aufgabe nochmal....


MFG GanxtaMo

Bezug
        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mo 23.08.2004
Autor: Archimedis_mR

hi,
also:
[mm] \bruch{2}{3}*x- \bruch{1}{3}= \bruch{1}{2}-( \bruch{1}{4}- \bruch{1}{6}*x) [/mm]

[mm] \gdw \bruch{1}{2}*x- \bruch{1}{3}= \bruch{1}{4} [/mm]
[mm] \bruch{1}{2}*x= \bruch{7}{12} [/mm]
x= [mm] \bruch{14}{12}=1 \bruch{1}{6} [/mm]

Gruß

GanxtaMo

Bezug
                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Di 24.08.2004
Autor: Mikel

Hallo,
ich bin neu hier und ich freue mich sehr, hier am Forum teilnehmen zu dürfen. Ich dachte, ich fange einfach mal ganz klein an, indem ich Archimedis' mR korrekten Lösungsvorschlag um ein paar Details ergänze. Sinn meiner anfänglichen Übung ist es, im Umgang mit dem Formelsystem vertraut zu werden und gleichzeitig etwas verwertbares (so hoffe ich) hier abzuliefern.

Also, die Aufgabe lautete ja

$ [mm] \bruch{2}{3}\cdot{}x- \bruch{1}{3}= \bruch{1}{2}-( \bruch{1}{4}- \bruch{1}{6}\cdot{}x) [/mm] $

1. Schritt: Klammern beseitigen und das Vorzeichen in der Klammer umkehren (von - nach +)

$ [mm] \bruch{2}{3}\cdot{}x- \bruch{1}{3}= \bruch{1}{2}- \bruch{1}{4}+\bruch{1}{6}\cdot{}x [/mm] $         \ [mm] -\bruch{1}{6}\cdot{}x [/mm]


$ [mm] \bruch{2}{3}\cdot{}x-\bruch{1}{6} \cdot{}x-\bruch{1}{3} [/mm] = [mm] \bruch{1}{2}- \bruch{1}{4} [/mm] $         \ [mm] +\bruch{1}{3} [/mm]


$ [mm] \bruch{2}{3}\cdot{}x-\bruch{1}{6}\cdot{}x [/mm] = [mm] \bruch{1}{2}- \bruch{1}{4}+\bruch{1}{3}$ [/mm]

Nenner auf beiden Seiten gleichnahmig machen und wir erhalten dann

$ [mm] \bruch{4}{6}\cdot{}x-\bruch{1}{6}\cdot{}x [/mm] = [mm] \bruch{6}{12}- \bruch{3}{12}+\bruch{4}{12}$ [/mm]

Zusammenfassen und kürzen ergibt

$ [mm] \bruch{1}{2}\cdot{}x [/mm] = [mm] \bruch{7}{12} [/mm] $

Jetzt brauchen wir nur noch $ [mm] \bruch{7}{12}$ [/mm] durch den Koeffizienten $  [mm] \bruch{1}{2} [/mm] $ zu teilen um x zu isolieren. Nach anschließendem Kürzen bekommen wir den x-Wert

x = [mm] 1\bruch{1}{6} [/mm]

Soweit meine Übung mit dem Formeleditor. Ich denke, wenn ich hier regelmäßig mitschreibe, wird der Umgang damit schnell zur Routine.

Es grüßt
Mikel

Bezug
                        
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:26 Di 24.08.2004
Autor: Stefan

Lieber Mikel!

[willkommenmr]

Das hat doch schon super geklappt!! [daumenhoch] [respekt]

Auf gute Zusammenarbeit im Forum!! :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]