www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Gleichung lösen
Gleichung lösen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Mo 11.04.2016
Autor: Mathics

Hallo,

wie löst man per Hand die folgenden Gleichung?


0 = -50 * [mm] (1+x)^3 [/mm] + 30 * [mm] (1+x)^2 [/mm] + 15 * (1+x) + 17


Wenn es nur hoch 2 wäre, könnte ich mit der pq oder Abc-Formel arbeiten, aber bei hoch 3 fällt mir kein Weg ein.


Danke!

LG
Mathics

        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Mo 11.04.2016
Autor: fred97


> Hallo,
>  
> wie löst man per Hand die folgenden Gleichung?
>  
>
> 0 = -50 * [mm](1+x)^3[/mm] + 30 * [mm](1+x)^2[/mm] + 15 * (1+x) + 17
>  
>
> Wenn es nur hoch 2 wäre, könnte ich mit der pq oder
> Abc-Formel arbeiten, aber bei hoch 3 fällt mir kein Weg
> ein.

"Von Hand" wirst Du das nicht hinbekommen. Da helfen nur numerische Verfahren.

Die Gleichung

0 = -50 * [mm]z^3[/mm] + 30 * [mm]z^2[/mm] + 15 *z + 17

hat z.B.  die Lösungen

[mm] z_1=1,131030044943127... [/mm]

[mm] z_2=-0,2655150224715635... [/mm] - i*0,47970064461088724...

und

[mm] z_3=-0,2655150224715635... [/mm] + i*0,47970064461088724...


Schau mal hier:

http://www.arndt-bruenner.de/mathe/scripts/polynome.htm
FRED

>  
>
> Danke!
>  
> LG
>  Mathics


Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mo 11.04.2016
Autor: Chris84


> > Hallo,
>  >  
> > wie löst man per Hand die folgenden Gleichung?
>  >  
> >
> > 0 = -50 * [mm](1+x)^3[/mm] + 30 * [mm](1+x)^2[/mm] + 15 * (1+x) + 17
>  >  
> >
> > Wenn es nur hoch 2 wäre, könnte ich mit der pq oder
> > Abc-Formel arbeiten, aber bei hoch 3 fällt mir kein Weg
> > ein.
>  
> "Von Hand" wirst Du das nicht hinbekommen. Da helfen nur
> numerische Verfahren.
>  
> Die Gleichung
>  
> 0 = -50 * [mm]z^3[/mm] + 30 * [mm]z^2[/mm] + 15 *z + 17
>  
> hat z.B.  die Lösungen
>  
> [mm]z_1=1,131030044943127...[/mm]
>  
> [mm]z_2=-0,2655150224715635...[/mm] - i*0,47970064461088724...
>  
> und
>  
> [mm]z_3=-0,2655150224715635...[/mm] + i*0,47970064461088724...
>  
>
> Schau mal hier:
>  
> http://www.arndt-bruenner.de/mathe/scripts/polynome.htm
>  FRED
>  >  
> >
> > Danke!
>  >  
> > LG
>  >  Mathics
>  

Huhu,
nur der Vollstaendigkeit halber: Es geht sicherlich auch "zu Fuss", naemlich mit den []Cardanischen Formeln.

Gruss,
Chris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]