www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gleichung in einem Ring
Gleichung in einem Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung in einem Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:00 Mi 26.11.2008
Autor: eumel

Aufgabe
Zeige:
Im Ring [mm] \IZ[X] [/mm] gilt die gleichung [mm] (2)\cap(X)=(2X) [/mm]

hallo zusammen ^^
als in der vorlesung [mm] (2)\cap(X) [/mm] erklärt wurde, war ich net da und hab im internet auch garnix dazu gefunden.
um die obige gleichung zu zeigen müssen ja die 2 inklusionen geprüft werden, oder?
nur hab ich kein plan, was man mit [mm] (2)\cap(X) [/mm] machen im sinne von rechnen und aussagen kann...

wär nett wenn mir das einer erklärt :)

gr
eumel

        
Bezug
Gleichung in einem Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Mi 26.11.2008
Autor: Fry

Hallo,

also für die Aufgabe solltest du dir klar machen, was die Ideale (2X) und [mm] (2)\cap(X) [/mm] bedeuten:
(2X) = [mm] \{f*(2X),f\in\IZ[X]\} [/mm] also die Menge der Polynome, die Produkt eines beliebigen Polynoms aus [mm] \IZ[X] [/mm] und dem Polynom 2X sind.
[mm] (2)\cap(X)=\{g\in\IZ[X], g\in(2) und g \in (X)\} [/mm]

[mm] 1.(2X)\subseteq(2)\cap(X): [/mm]

[mm] 2X\in(2)\cap(X), [/mm] da [mm] 2X\in(2) [/mm] und [mm] 2X\in(X) [/mm]
[mm] \Rightarrow f*(2X)\in(2)\cap(X) [/mm] für alle [mm] f\in\IZ[X] [/mm] (Eigenschaft von Idealen: Abgeschlossenheit bzgl. der Multiplikation mit Elementen aus dem Ring)
Fertig !

2. [mm] (2)\cap(X)\subseteq(2X): [/mm]

Sei h [mm] \in (2)\cap(X), [/mm]
d.h. es existieren i,j [mm] \in \IZ[X] [/mm] mit h=i*2 und h=j*X
[mm] \Rightarrow [/mm] 2|h und X|h
[mm] \Rightarrow [/mm] 2X|h , da ggT(2,X)=1
[mm] \Rightarrow \exists k\in \IZ[X] [/mm] mit h=k*(2X)


VG
Christian



Bezug
                
Bezug
Gleichung in einem Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Mi 26.11.2008
Autor: eumel

joo :)
mit so ner geilen antwort hab ich jetz echt nicht gerechnet ^^
danke auf jeeedenfall!!!

greetz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]