www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Gleichung Lösen
Gleichung Lösen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 10.11.2007
Autor: Arvi-Aussm-Wald

Aufgabe
bestimme die komplexen lösugen in der form x+iy mit x,y [mm] \in \ir [/mm]

[mm] 0,25z^4+2=2*\wurzel{3i} [/mm]

hi@all

also lösen ist ja kein problem aber nachh umformen in x+iy schon.

ich hab substituiert und dann abc-formel angewendet.

nach dem rück substituieren bekomm ich dann:

[mm] z=\pm \wurzel{\bruch{\pm \wurzel{-2+2*\wurzel{3i}}}{0.5}} [/mm]

also hab ich 4 lösungen, aber wie soll ich das jetzt umschreiben? ich habs versucht vorher wenn ich substituert habe umzuformen aber es bringt mich nicht weiter.

ebenso bringt die substitution [mm] z^4=u [/mm] auch recht wenig, da hat man nachher genau das selbe.

wäre cool wenn mir jemand von den schlauen köpfen hier helfen könnte ;)

        
Bezug
Gleichung Lösen: Moivre
Status: (Antwort) fertig Status 
Datum: 10:40 So 11.11.2007
Autor: Infinit

Hallo Arvi,
zunächst eine Frage: Bist Du sicher, dass i unter der Wurzel steht, das glaube ich nicht so ganz, um ehrlich zu sein.
Der Trick bei diesem Typ von Aufgaben liegt darin, die Lösung in Polarkoordinaten zu bestimmen. Wenn ich Deine Gleichung umschreibe (mit dem i außerhalb der Wurzel) , erhalte ich
$$ [mm] z^4 [/mm] = -8 + 8 i [mm] \wurzel{3} \, [/mm] . $$
Diese Gleichung hat vier Lösungen, die man nach Umformung in Polarkoordinaten leicht bestimmen kann. Sie liegen alle auf einem Kreis um den Nullpunkt, dessen Radius sich mit Hilfe des 4. Wurzel aus der Länge der recht stehenden Zahl ergibt. Die Winkel der einzelnen Lösungen sind um 90 Grad gegeneinander versetzt.


    $ [mm] \wurzel[n]{z}=r^{\bruch{1}{n}} \cdot [/mm] ( [mm] \cos (\bruch{\varphi}{n} [/mm] + k [mm] \bruch{2 \pi}{n} [/mm] ) + j [mm] \sin (\bruch{\varphi}{n} [/mm] + k [mm] \bruch{2 \pi}{n} [/mm] ) ) $

mit k = 0 , ..., n-1. Bei Dir ist die obere Grenze also 3.
Damit hast Du alle Lösungen gegeben.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]