www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Gleichmäßige Stetigkeit zeigen
Gleichmäßige Stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Sa 02.06.2012
Autor: Lu-

Aufgabe
Zeigen Sie mittels [mm] \epsilon, \delta [/mm] - Definition, dass für alle  a [mm] \in \IR [/mm] die Funktion f : [mm] \IR [/mm] -> [mm] \IR [/mm] gegeben durch f(x) = [mm] \frac{a}{1+a^2 x^2} [/mm] auf [mm] \IR [/mm]  gleichmäßig stetig ist.

[mm] \forall \epsilon [/mm] >0 [mm] \exists \delta [/mm] >0
[mm] \forall [/mm] x, y [mm] \in \IR [/mm] : |x-y| < [mm] \delta [/mm] => |f(x) - f(x')| < [mm] \epsilon [/mm]


|f(x) - f(y)| = [mm] |\frac{a}{1+a^2*x^2} -\frac{a}{1+a^2*y^2}| [/mm] = |a| * [mm] |\frac{1}{1+a^2*x^2} -\frac{1}{1+a^2*y^2}| [/mm] = |a| * [mm] |\frac{a^2 y^2 -a^2 x^2}{(1+a^2*x^2)*(1+a^2*y^2)}| [/mm] <= |a| * [mm] \frac{|a^2|*(|x+y|)*\delta}{(1+a^2*x^2)*(1+a^2*y^2)} [/mm]

Ich bin überfordert wie ich das kleiner als [mm] \epsilon [/mm] bekomme!

        
Bezug
Gleichmäßige Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 So 03.06.2012
Autor: leduart

Hallo

wie stark kann sich y denn maximal von x unterscheiden, nimm erstmal etwa [mm] \delta<0.5 [/mm] dann ersetz entsprechen y durch x und [mm] \delta [/mm]
Gruss leduart


Bezug
                
Bezug
Gleichmäßige Stetigkeit zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 02:19 So 03.06.2012
Autor: Lu-

Hallöchen,

Ich habe eine frage dazu:
Was meinst du mit

> ersetz entsprechen y durch x und $ [mm] \delta [/mm] $

?

Bezug
                        
Bezug
Gleichmäßige Stetigkeit zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Di 05.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]