www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Gleichmäßige Konvergenz
Gleichmäßige Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Fr 19.02.2010
Autor: Mat08

Aufgabe
Ich möchte folgenden Satz beweisen, habe dazu aber noch keinen Beweis gefunden und habe mich deshalb daran selbst versucht, und bin leider gescheitert. Der Satz lautet:
Die Folge [mm] $\left(1 - \frac{z}{n}\right)^{-n}$, [/mm] mit [mm] $n\in\mathbb{N}$, $n\geq [/mm] 1$, von Polynomfunktionen auf [mm] $\mathbb{C}$, [/mm] konvergiert auf jeder Kreisscheibe [mm] $\overline{K}_r(0)$ [/mm] gleichmäßig gegen die Exponentialfunktion. Insbesondere gilt [mm] $e^z [/mm] = [mm] \lim\limits_{n\to\infty} \left(1 - \frac{z}{n}\right)^{-n}$ [/mm] für alle [mm] $z\in\mathbb{C}$. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Mein Ansatz ist der folgende

Zunächst bringen wir die die Folge durch elementare Umformungen auf die Form
[mm] $\left(1 - \frac{z}{n}\right)^{-n} [/mm] = [mm] \left(\frac{n}{n-z}\right)^n= \left(1+ \frac{z}{n-z}\right)^n.$ [/mm]

Durch Anwendung des binomischen Lehrsatzes erhalten wir
[mm] \left(1+ \frac{z}{n-z}\right)^n &=\sum_{k=0}^{n} \binom [/mm] n k [mm] \cdot \frac{z^k}{(n-z)^k}\\ [/mm]
[mm] =\sum_{k=0}^{n} \frac{n(n-1)\cdot \ldots \cdot (n-(k-1))}{(n-z)^k}\cdot \frac{z^k}{k!}\\ [/mm]
= [mm] \sum_{k=0}^{n} \left(1+\frac{z}{n-z}\right)\left(1 + \frac{z-1}{n-z}\right)\cdot \ldots \cdot \left(1 + \frac{z-(k-1)}{n-z}\right) \cdot \frac{z^k}{k!}.$ [/mm]
Wir wollen zeigen, dass die Folge [mm] $\left(1 - \frac{z}{n}\right)^{-n}$ [/mm] auf jeder Kreisscheibe [mm] $K_r(0)$ [/mm] gleichmäßig gegen die Exponentialfunktion konvergiert, sodass
[mm] $\left| \left(1 - \frac{z}{n}\right)^{-n} - \sum_{k=0}^{\infty} \frac{z^k}{k!}\right| \leq \epsilon ~~~\forall\epsilon\leq [/mm] 0 [mm] ~\text{und n}>N.$ [/mm]
Für beliebige [mm] $\epsilon [/mm] > 0$ und Radien $r>0$ gibt es eine universelle Grenze N, sodass  
$
[mm] \sum_{k=N + 1}^{\infty} \frac{r^k}{k!} \leq \frac{\epsilon}{3}. [/mm]
$
Für alle $n>N$, [mm] $z\in\mathbb{C}$ [/mm] und [mm] $|z|\leq [/mm] r$ ist dann

[mm] $\left| \left(1 - \frac{z}{n}\right)^{-n} - \sum_{k=0}^{\infty} \frac{z^k}{k!}\right| \leq [/mm]
[mm] \left| \sum_{k=0}^{N} \left[\left(1+\frac{z}{n-z}\right)\cdot \dots \cdot \left(1 + \frac{z-(k-1)}{n-z}\right)-1\right] \cdot \frac{z^k}{k!}\right|\\ [/mm]
+ [mm] \sum_{k=N+1}^{n} \left(1+\frac{z}{n-z}\right)\left(1 + \frac{z-1}{n-z}\right)\cdot \dots \cdot \left(1 + \frac{z-(k-1)}{n-z}\right) \cdot \frac{r^k}{k!} \\ [/mm]
+ [mm] \underbrace{\sum_{k=N+1}^{\infty} \frac{r^k}{k!}}_{\leq\frac{\epsilon}{3}}$ [/mm]

Leider weiß ich nicht, wie ich die Abschätzungen am Schluss machen soll, oder ob meine Überlegung insgesamt ganz falsch waren. Über Hilfe würde ich mich sehr freuen.

        
Bezug
Gleichmäßige Konvergenz: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Fr 19.02.2010
Autor: Wirtschaftsweiser

Hallo

Irgendwie sieht deine letzte Ungleichungsabschätzung ein bisschen zu rabiat aus. Vielleicht besserst du da noch ein bisschen nach?

Ansonsten siehts gut aus.

Viele Grüße

PS: meine vorherige Lösung war falsch, daher habe ich sie gelöscht.

Bezug
        
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Fr 19.02.2010
Autor: kalkulator

Hallo Mat08,
>  
> Zunächst bringen wir die die Folge durch elementare
> Umformungen auf die Form
>  [mm]\left(1 - \frac{z}{n}\right)^{-n} = \left(\frac{n}{n-z}\right)^n= \left(1+ \frac{z}{n-z}\right)^n.[/mm]
>  
> Durch Anwendung des binomischen Lehrsatzes erhalten wir
>  [mm]\left(1+ \frac{z}{n-z}\right)^n &=\sum_{k=0}^{n} \binom[/mm] n
> k [mm]\cdot \frac{z^k}{(n-z)^k}\\[/mm]
>  [mm]=\sum_{k=0}^{n} \frac{n(n-1)\cdot \ldots \cdot (n-(k-1))}{(n-z)^k}\cdot \frac{z^k}{k!}\\[/mm]
>  
>  = [mm]\sum_{k=0}^{n} \left(1+\frac{z}{n-z}\right)\left(1 + \frac{z-1}{n-z}\right)\cdot \ldots \cdot \left(1 + \frac{z-(k-1)}{n-z}\right) \cdot \frac{z^k}{k!}.$[/mm]
>  

Bis hierher habe ich Deine Rechnung nachvollzogen, komme auf dasselbe Ergebnis.
Den Rest Der Rechnung versuche ich auch noch nachzuvollziehen, kann aber dauern...

> Wir wollen zeigen, dass die Folge [mm]\left(1 - \frac{z}{n}\right)^{-n}[/mm]
> auf jeder Kreisscheibe [mm]K_r(0)[/mm] gleichmäßig gegen die
> Exponentialfunktion konvergiert, sodass
>  [mm]\left| \left(1 - \frac{z}{n}\right)^{-n} - \sum_{k=0}^{\infty} \frac{z^k}{k!}\right| \leq \epsilon ~~~\forall\epsilon\leq 0 ~\text{und n}>N.[/mm]

...und das arme Epsilon hier drüber freut sich sicherlich, wenn es [mm] $\geq0$ [/mm] sein darf...

Gruß Andreas


Bezug
                
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Fr 19.02.2010
Autor: felixf

Hallo Andreas,

> > Wir wollen zeigen, dass die Folge [mm]\left(1 - \frac{z}{n}\right)^{-n}[/mm]
> > auf jeder Kreisscheibe [mm]K_r(0)[/mm] gleichmäßig gegen die
> > Exponentialfunktion konvergiert, sodass
>  >  [mm]\left| \left(1 - \frac{z}{n}\right)^{-n} - \sum_{k=0}^{\infty} \frac{z^k}{k!}\right| \leq \epsilon ~~~\forall\epsilon\leq 0 ~\text{und n}>N.[/mm]
>  
> ...und das arme Epsilon hier drüber freut sich sicherlich,
> wenn es [mm]\geq0[/mm] sein darf...

aber gleich 0 ist es sicher auch nicht so gern :)

LG Felix


Bezug
                        
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 Sa 20.02.2010
Autor: Marcel

Hallo,


> > ...und das arme Epsilon hier drüber freut sich sicherlich,
> > wenn es [mm]\geq0[/mm] sein darf...
>  
> aber gleich 0 ist es sicher auch nicht so gern :)

immer diese Einschränkungen an das arme Epsilon. Wo es doch in Wahrheit eigentlich komplex sein wollte. Aber keiner läßt ihm diese Freiheit, immer wird zu ihm gesagt: "Bleib' positiv!" ;-)

Beste Grüße,
Marcel

Bezug
        
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:44 So 21.02.2010
Autor: Wirtschaftsweiser

Hmm, versuche doch mal deine Abschätzung etwas zu verfeinern.

Punktweise Konvergenz der genannten Funktionenfolge gegen die Exponentialfunktion sollte fast offensichtlich sein, wenn du weißt, dass gilt

[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^{n} = e^{z}, \forall z \in \IC [/mm]

Denn es gilt dann auch

[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n-z})^{n}=\limes_{n\rightarrow\infty} \bruch{1}{(1-\bruch{z}{n})^{n}}=\bruch{1}{e^{-z}}=e^{z}, \forall z \in \IC [/mm]


Dann könntest du gleichmäßige Konvergenz dadurch zeigen, indem du sagst, dass die Funktion

[mm] |e^{z}-(1+\bruch{z}{n-z})^{n}| = |\summe_{k=n+1}^{\infty} \bruch{z^{k}}{k!} + \summe_{k=0}^{n} \bruch{z^{k}}{k!}*(1-\bruch{n!}{(n-k)!}*\bruch{1}{(n-z)^{k}})| [/mm]

ihr Maximum unabhängig von [mm] n [/mm] auf dem Rand der Kreisscheibe [mm] \overline{K}_{r}(0)[/mm] annimmt, [mm] n > r [/mm] mal vorausgesetzt (muss natürlich auch noch gezeigt werden). Dann würde einfach folgen

[mm] \forall \varepsilon > 0: \exists N \in \IN, N \ge r: \forall n > N , \forall z \in \overline{K}_{r}(0) : |e^{z}-(1+\bruch{z}{n-z})^{n}| \le |e^{r}-(1+\bruch{r}{n-r})^{n}| < \varepsilon [/mm]

Möglich, dass ich da noch ein paar Feinheiten übersehen habe, aber so ungefähr könnte es gehen.

Gruß

Bezug
                
Bezug
Gleichmäßige Konvergenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:31 Mo 22.02.2010
Autor: Mat08

Hallo Wirtschaftsweise,
vielen Dank für deine Hilfe. Ich konnte deine Antwort bis zur gleichmäßigen Konvergenz nachvollziehen. Danach leider nicht mehr.

Wie soll ich denn zeigen, dass
[mm] $|e^z [/mm] - (a + [mm] \frac{z}{n-z})^n|$ [/mm]
ihr Maximum unabhängig von $n$ auf dem Rand der Kreisscheibe annimmt? Da habe ich leider keine Ahnung, wie ich da ran gehen soll.

Schöne Grüße
Mat


Bezug
                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 22.02.2010
Autor: Wirtschaftsweiser

Na ja, reicht eigentlich das für "genügend große" n zu zeigen (blöde Formulierung, aber da es hier um eine Grenzwertbetrachtung geht, können dir endlich viele n, also alles bis zu einem bestimmten Index N egal sein)

Rigoros habe ich das auch noch nicht gezeigt, aber schauen wir uns den Term doch mal an und drehen ihn mal um.

[mm] |e^{z}-(1+\bruch{z}{n-z})^{n}| = |(1+\bruch{z}{n-z})^{n}-e^{z}| = |-\summe_{k=n+1}^{\infty} \bruch{z^{k}}{k!} - \summe_{k=0}^{n} \bruch{z^{k}}{k!}*(\bruch{n!}{(n-k)!}*\bruch{1}{(n-z)^{k}}-1)| [/mm]

Der erste Summand ist für großes n zu vernachlässigen (will heißen, stört dich der Wert, wähle einfach ein größeres n und du kriegst ihn beliebig klein)
Der zweite Summand wird vom Betrage her für großes z auch groß (kann man sich schnell überlegen. Der Faktor [mm] \bruch{z^{k}}{k!} [/mm] wächst betragsmäßig offensichtlich für großes z, der zweite Faktor für festes n ebenfalls, da dann der Ausdruck [mm] \bruch{n!}{(n-k)!}*\bruch{1}{(n-z)^{k}} [/mm] größer wird)

Ich hoffe das reicht dir erstmal. Falls ich es noch genauer ausführen soll, sag Bescheid, dann drücke ich mich vielleicht nicht, das zu versuchen ganz genau aufzuschreiben.^^

Gruß

Bezug
                                
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:48 Di 23.02.2010
Autor: Mat08

Hallo Wirtschaftsweise,
ich hoffe, ich schaffe es jetzt. :-) Ich werde mich die nächsten Tage mal dran machen und gebe dann nochmal bescheid, ob es geklappt hat.

Vielen Dank für deine umfangreiche Hilfestellung.

Gruß
M


Bezug
                                
Bezug
Gleichmäßige Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:56 Mo 01.03.2010
Autor: Mat08

Hallo,
ich habe es versucht komme aber auf keinen grünen Zweig. Deiner Argumentation zur Folge wird der zweite Term groß, dass soll er aber eigentlich doch gar nicht. Würde mich sehr freuen, wenn wir das Probelm gemeinsam lösen könnten.

Habe auch nochmal über deinen Hinweis mit der punktweisen Konvergenz nachgedacht. Ich glaube aber, dass dort ein Fehler gemacht wurde. Du folgerst, dass aus [mm] $\lim_{n\to\infty} [/mm] (1 + [mm] \frac{z}{n})^n [/mm] = [mm] e^z$ [/mm] gefolgert werden kann, dass [mm] $\lim_{n\to\infty} [/mm] (1 + [mm] \frac{z}{n-z})^n [/mm] = [mm] e^z$, [/mm] vermutlich deshalb, weil für [mm] $n\to\infty$ [/mm] das [mm] $z\in\mathbb{C}$ [/mm] vernachlässigt werden kann.
Ich glaube, dies ist nicht zulässig, weil wir nicht wissen, ob der Limes von $(1 + [mm] \frac{z}{n-z})^n$ [/mm] existiert. Oder was wäre deine Begründung?

Bezug
                                        
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:30 Do 04.03.2010
Autor: Wirtschaftsweiser

Hi!

Mit der punktweisen Konvergenz ist auf jeden Fall alles in Ordnung, die Exponentialfolge konvergiert ja für jedes [mm] z \in \IC [/mm] Den Rest habe ich einfach nur aus den Rechenregeln für Grenzwerte gefolgert.

Und das der obige Term für großes z groß wird wollen wir ja gerade, denn dann können wir ja für alle anderen z den Term abschätzen. Tue mich auch immer ein bisschen schwer das vernünftig übers Internet zu erklären, ist halt nicht das selbe wie wenn man direkt seine Ideen mitteilen kann. Möglich dass dir das noch nicht weiterhilft, aber hoffe zumindest, dass ich eine Ideen ein bisschen klarer gemacht habe.

Bezug
                                        
Bezug
Gleichmäßige Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 01.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Do 04.03.2010
Autor: fred97

Dass die Folge

            $ [mm] (\left(1 + \frac{z}{n}\right)^{n}) [/mm] $

auf jeder Kreisscheibe  $ [mm] \overline{K}_r(0) [/mm] $ gleichmäßig gegen [mm] e^z [/mm] konvergiert kann man folgendermaßen zeigen (Beweisskizze):

1. Für $|z|<1$ ist

            $log(1+z) = [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n+1}}{n}z^n$ [/mm]

(Hauptzweig des Logarithmus)

2. Aus 1. folgt:

             $|log(1+z)-z| [mm] \le |z|^2$ [/mm]   für $|z| [mm] \le [/mm] 1/2$

3. Sei r >0. Dann ex. ein N [mm] \in \IN [/mm] , so dass für n [mm] \ge [/mm] N die Funktionen

             [mm] $f_n(z):= [/mm] n*log(1+z/n)$

auf $ [mm] \overline{K}_r(0) [/mm] $ definiert sind.

Wegen 2. kann man davon ausgehen, dass N so gewählt ist, dass

             (*)   [mm] $|f_n(z)-z| \le \bruch{|z|^2}{n}$ [/mm] für n [mm] \ge [/mm] N und z [mm] \in [/mm] $ [mm] \overline{K}_r(0) [/mm] $

ist.

4. Aus (*) folgt, dass [mm] (f_n) [/mm] auf $ [mm] \overline{K}_r(0) [/mm] $  gleichmäßig gegen $f(z) =z$ konvergiert.

5. Aus 4. erhalten wir:

             [mm] $\limes_{n\rightarrow\infty}(1+z/n)^n [/mm] = [mm] e^z$ [/mm]  gleichmäßig auf $ [mm] \overline{K}_r(0) [/mm] $

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]