www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gleichmächtigkeit
Gleichmächtigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmächtigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 27.11.2005
Autor: Franzie

Hallo Leute!
Hab mal ne frage zu folgender aufgabe:
ich soll zeigen, dass
a) die menge U der ungeraden natürlichen zahlen und die menge der ganzen zahlen gleichmächtig sind.
ich muss ja jetzt zeigen, dass es eine bijektive abbildung von U in Z gibt, also muss ich mir eine abbildungsvorschrift überlegen, die dies erfüllt. die ungeraden zahlen lassen sich doch durch f(x)=2x+1 darstellen. ist das schon eine solche abbildung?

b) das abgeschlossene intervall [mm] [0,1]:=\{ x \in \IR: 0\le x \le 1 \} [/mm] und das offene intervall (0,1):= [mm] \{ x \in \IR: 0 < x < 1 \} [/mm] gleichmächtige teilmengen von  [mm] \IR [/mm] sind. also brauch ich auch hier wieder so eine bijektive abbildung.
wäre sehr dankbar über eine idee, wie sich eine solche abbildung leicht finden lässt.

liebe grüße

        
Bezug
Gleichmächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mo 28.11.2005
Autor: banachella

Hallo!

> a) die menge U der ungeraden natürlichen zahlen und die
> menge der ganzen zahlen gleichmächtig sind.
>  ich muss ja jetzt zeigen, dass es eine bijektive abbildung
> von U in Z gibt, also muss ich mir eine
> abbildungsvorschrift überlegen, die dies erfüllt. die
> ungeraden zahlen lassen sich doch durch f(x)=2x+1
> darstellen. ist das schon eine solche abbildung?

Das ist in der Tat bereits eine solche Abbildung!
  

> b) das abgeschlossene intervall [mm][0,1]:=\{ x \in \IR: 0\le x \le 1 \}[/mm]
> und das offene intervall (0,1):= [mm]\{ x \in \IR: 0 < x < 1 \}[/mm]
> gleichmächtige teilmengen von  [mm]\IR[/mm] sind. also brauch ich
> auch hier wieder so eine bijektive abbildung.
> wäre sehr dankbar über eine idee, wie sich eine solche
> abbildung leicht finden lässt.

Eine Bijektion fällt mir im Moment leider auch nicht ein. Aber zum Beispiel wäre
[mm] $(0,1)\to[0;1]$, $x\mapsto\begin{cases} 3x-1,& \mbox{falls } x\in\left[\bruch 13;\bruch 23\right],\\ 0,&\mbox{sonst.} \end{cases}$ [/mm] eine Surjektion. Darauf kann man dann doch immerhin schon mal folgern, dass $(0;1)$ mindestens so mächtig ist wie $[0;1]$...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]