www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Gleichheit zeigen Reihe
Gleichheit zeigen Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit zeigen Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mi 09.03.2011
Autor: Loriot95

Aufgabe
Zeigen Sie

[mm] \summe_{k=1}^{\infty}kx^{k} [/mm] = [mm] \bruch{x}{(1-x)^{2}} [/mm] für x:|x| < 1

Guten Tag,

ich habe folgendes hier versucht:

[mm] \bruch{x}{(1-x)^{2}} [/mm] =
[mm] \summe_{k=0}^{\infty}x^{k} [/mm] * [mm] \summe_{k=0}^{\infty}x^{k} [/mm] * x
=
[mm] \summe_{k=0}^{\infty}x^{2k+1} [/mm]

Hm und ab hier weiß ich leider nicht weiter. Hat jemand einen Tipp für mich?

LG Loriot95

        
Bezug
Gleichheit zeigen Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 09.03.2011
Autor: fred97


> Zeigen Sie
>
> [mm]\summe_{k=1}^{\infty}kx^{k}[/mm] = [mm]\bruch{x}{(1-x)^{2}}[/mm] für
> x:|x| < 1
>  Guten Tag,
>  
> ich habe folgendes hier versucht:
>  
> [mm]\bruch{x}{(1-x)^{2}}[/mm] =
> [mm]\summe_{k=0}^{\infty}x^{k}[/mm] * [mm]\summe_{k=0}^{\infty}x^{k}[/mm] *
> x
>  =
> [mm]\summe_{k=0}^{\infty}x^{2k+1}[/mm]


Das ist doch Quatsch ! Wenn Du meinst es gilt

            $ [mm] (\summe_{n=0}^{\infty}a_n)*( \summe_{n=0}^{\infty}b_n)= \summe_{n=0}^{\infty}a_n*b_n$, [/mm]

so hast Du Dich gewaltig geschnitten !!!

Tipp:  Cauchyprodukt

FRED

>  
> Hm und ab hier weiß ich leider nicht weiter. Hat jemand
> einen Tipp für mich?
>  
> LG Loriot95


Bezug
                
Bezug
Gleichheit zeigen Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 Mi 09.03.2011
Autor: Loriot95

Oh verdammt. Das hab ich komplett vergessen. Danke :)

Bezug
        
Bezug
Gleichheit zeigen Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mi 09.03.2011
Autor: schachuzipus

Hallo Loriot,

> Zeigen Sie
>
> [mm]\summe_{k=1}^{\infty}kx^{k}[/mm] = [mm]\bruch{x}{(1-x)^{2}}[/mm] für
> x:|x| < 1
> Guten Tag,
>
> ich habe folgendes hier versucht:
>
> [mm]\bruch{x}{(1-x)^{2}}[/mm] =
> [mm]\summe_{k=0}^{\infty}x^{k}[/mm] * [mm]\summe_{k=0}^{\infty}x^{k}[/mm] *
> x
> =
> [mm]\summe_{k=0}^{\infty}x^{2k+1}[/mm]
>
> Hm und ab hier weiß ich leider nicht weiter. Hat jemand
> einen Tipp für mich?

Alternativ und ohne Anfälligkeit für Rechenfehler benutze die geometrische Reihe:

Es ist für [mm]|x|<1[/mm] doch [mm]\sum\limits_{k=0}^{\infty}x^k=\frac{1}{1-x}[/mm]

Leite beide Seiten ab und multipliziere anschließend mit [mm]x[/mm] ...


>
> LG Loriot95

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]