www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Gleichheit exponentialreihe
Gleichheit exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit exponentialreihe: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 13.12.2011
Autor: yangwar1

Aufgabe
Zeigen Sie, dass für alle $ k [mm] \in \IZ [/mm] $ gilt:
$ exp(k) = [mm] e^k [/mm] $

Hallo,

der Beweis taugt vermutlich nicht recht viel, dennoch wollte ich euch bitten ihn zu korrigieren bzw. mir einen besseren Ansatz zu liefern.
Beweis: Die Exponentialfunktion ist definiert durch:
$ [mm] \summe_{n=0}^{\infty}\bruch{x^n}{n!} [/mm] $ Die eulersche Zahl ist definiert als $ exp(1) = [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] $. Zu zeigen ist also, dass gilt: $ [mm] \summe_{n=0}^{\infty}\bruch{x^n}{n!} [/mm] = [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] $. Da für jedes $ k [mm] \in \IR [/mm] $ die Reihe $ exp(k) § absolut konvergent ist, sind beide Reihen absolut konvergent. Da jede absolute konvergente Reihe konvergent ist, sind beide Reihen konvergent. Da die Reihen konvergent sind, gilt: $ lim [mm] \bruch{x^n}{n!} [/mm] = 0 = 0 = lim [mm] \bruch{1}{n!} [/mm] $.

---
Demnach sind also die Grenzwert der beiden Folgen gleich. Das bedeutet ja aber noch nicht, dass auch die Reihen gleich sind.

        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 13.12.2011
Autor: Helbig

Ich kann keinen Zusammenhang zwischen Aufgabe und Deinem Lösungsversuch entdecken.
Du mußt doch [mm] $\exp(k)=e^k$ [/mm] zeigen, also
[mm] $\sum_{i=0}^\infty \bruch {k^i} {i!}=\left(\sum_{i=0}^\infty \bruch 1 {i!} \right)^k$ [/mm] für [mm] $k\in\IZ$. [/mm]

Diese furchteinflößende Formel würde ich ganz schnell wieder vergessen und [mm] $\exp(k)=e^k$ [/mm] mit Induktion nach $k$ zeigen.

Reicht das schon mal?

Bezug
                
Bezug
Gleichheit exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 14.12.2011
Autor: yangwar1

Ich verstehe nicht ganz warum ich die Formel wieder vergessen soll, wenn ich sie doch zur Berechnung bei der Induktion brauche. Oder mache ich etwas falsch?

Mit der Induktion kann ich nur etwas beweisen, dass für höhere Werte nach einer überprüften Gleichheit passiert. In meinem Fall muss ich es aber für die ganzen Zahlen überprüfen. Wäre dann folgende Vorgehensweise richtig. Ich beweise es zuerst für alle ganzen Zahlen größer 0 und anschließend
für $ exp (-k) $ Das wären dann die negativen.

IA: für k=0 $ exp(0) = 1 = 1 = [mm] e^0 [/mm] $
IV: Es gelte "die Gleichheit" für alle k>0 und k aus den ganzen Zahlen.
IS: $ exp(k+1) = [mm] \summe_{i=0}^{\infty}\bruch {(k+1)^i}{i!}=...= [/mm]
[mm] \left(\sum_{i=0}^\infty \bruch 1 {i!} \right)^{k+1} [/mm]


Ich komme allerdings nicht auf den letzten Teil. Ist das überhaupt richtig, weil ich mir schwer vorstellen kann wie man darauf kommt.

Bezug
                        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 14.12.2011
Autor: Helbig

Zeige zuerst [mm] $\exp [/mm] k = [mm] e^k$ [/mm] für alle [mm] $k\ge [/mm] 0$. Dein Induktionsanfang war schon richtig. Beim Induktionsschritt benutzt Du die Funktionalgleichung [mm] $\exp [/mm] (x+y) = [mm] \exp [/mm] x * [mm] \exp [/mm] y$ und die Potenzformel [mm] $e^{x+y}=e^x*e^y$. [/mm]

OK?

Gruß,
Wolfgang

Bezug
                                
Bezug
Gleichheit exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Do 15.12.2011
Autor: yangwar1

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Gut, das ist verständlich.

Jetzt muss ich es also noch für alle ganzen Zahlen kleiner als 0 zeigen.

War mein Ansatz dann richtig? Ich komme dann nämlich zu etwas falschem.
IA: $ exp(-0) = exp (0) = 1 = 1 = e^{-0) = e^{0} = 1 $
IV: Die Gleichheit gilt für alle k>0 mit k aus den ganzen Zahlen.
IS: $ k->k+1: exp(-(k+1))=exp(-k-1) = exp(-k)*exp(-1) = exp(-k)*(-e) = (IV) e^{-k}*(-e) = -e^{-k+1} =  -e^{-(k-1)} $

Ich muss doch aber zeigen, dass folgt: $ e^{-(k+1)} $

Vermutlich muss ich wohl als IA setzen: $ -exp(k)=e^{-k} $ ?

Bezug
                                        
Bezug
Gleichheit exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Do 15.12.2011
Autor: fred97


> Gut, das ist verständlich.
>  
> Jetzt muss ich es also noch für alle ganzen Zahlen kleiner
> als 0 zeigen.
>
> War mein Ansatz dann richtig? Ich komme dann nämlich zu
> etwas falschem.
>  IA: [mm]exp(-0) = exp (0) = 1 = 1 = e^{-0) = e^{0} = 1[/mm]
>  IV:
> Die Gleichheit gilt für alle k>0 mit k aus den ganzen
> Zahlen.

Das ist doch Quatsch ! Wenn Du voraussetzt, dass Gleichheit für alle k>0 gilt, so mußt Du doch nichts mehr zeigen !!!


I.V.: sei k [mm] \in \IN [/mm] und [mm] exp(-k)=e^{-k} [/mm]


>  IS: [mm]k->k+1: exp(-(k+1))=exp(-k-1) = exp(-k)*exp(-1) = exp(-k)*(-e) = (IV) e^{-k}*(-e)}[/mm]

Unsinn. Es ist  nach IV::

                   $exp(-k)*exp(-1) [mm] =e^{-k}*e^{-1}$ [/mm]

Damit:  $exp(-(k+1))= [mm] e^{-k-1}= e^{-(k+1)}$ [/mm]

FRED




[mm] = -e^{-k+1} = -e^{-(k-1)}[/mm]

>  
> Ich muss doch aber zeigen, dass folgt: [mm]e^{-(k+1)}[/mm]
>  
> Vermutlich muss ich wohl als IA setzen: [mm]-exp(k)=e^{-k}[/mm] ?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]