www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Gleichgradige Stetigkeit [0,1]
Gleichgradige Stetigkeit [0,1] < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgradige Stetigkeit [0,1]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Mi 23.05.2007
Autor: laryllan

Aufgabe
Sei [tex] \Phi \subset C \[0,1\] [/tex] eine Menge von gleichgradig stetigen Funktionen. Welche der folgenden Familien sind dann wieder gleichgradig stetig. Beweisen Sie ihre Vermutung oder geben Sie ein Gegenbeispiel an!
a) [tex] \{ 2007 * f | f \in \Phi \} [/tex]
b) [tex] \{ f^{2007} | f \in \Phi \} [/tex]

Aloha hé,

ich habe obige tolle Aufgabe, die mich etwas verwirrt. Bislang hatten wir gleichgradige Stetigkeit nur auf [tex] \IR [/tex] betrachtet. Bei der obigen Aufgabe steht und fällt alles mit der Interpretation von [0,1].

Zunächst: Ich bezieh mich auf []diese Formulierung der gleichgradigen Stetigkeit

Beispiel: Wäre [tex] \Phi [/tex] von [tex] \IR \rightarrow \IR [/tex], dann läge in Fall a) sicherlich ebenso wieder eine gleichgradig stetige Familie vor (kann man ja mit einem Epsilon-Trick zeigen... man nimmt für die Ausgangsmenge gerade Epsilon/2007 und multipliziert entsprechend den Betrag). Wenn ich allerdings fordere, dass ich gefälligst in [0,1] bleiben soll, dann wäre es keine Familie mehr, da ja durch die Multiplikation mit 2007 einige Funktionen außerhalb liegen könnten.

Bei b) bin ich noch unsicherer. Wenn ich mir bspw. f(x)=x als Teil der Funktionenfamilie anschaue, dann bringt eine 2007-Potenz drastische Folgen mit sich... insbesondere dürfte das [tex] \delta [/tex] ein anderes werden - in Abhängigkeit von der gewählten Funktion.

Wäre wie immer für einen Wink mit dem Zaunpfahl sehr dankbar.

Namárie,
sagt ein Lary, wo nun erstmal frühstücken geht

        
Bezug
Gleichgradige Stetigkeit [0,1]: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 23.05.2007
Autor: kornfeld

Hallo laryllan,

> Beispiel: Wäre [tex]\Phi[/tex] von [tex]\IR \rightarrow \IR [/tex], dann läge in
> Fall a) sicherlich ebenso wieder eine gleichgradig stetige
> Familie vor (kann man ja mit einem Epsilon-Trick zeigen...
> man nimmt für die Ausgangsmenge gerade Epsilon/2007 und
> multipliziert entsprechend den Betrag). Wenn ich allerdings
> fordere, dass ich gefälligst in [0,1] bleiben soll, dann
> wäre es keine Familie mehr, da ja durch die Multiplikation
> mit 2007 einige Funktionen außerhalb liegen könnten.

Das ist Unsinn. Der Funktionenraum $C([0,1])$ ist ein Vektorraum. Beachte, dass dieser Raum der Raum aller stetigen Funktionen ueber dem Intervall $[0,1]$ bezeichnet! Deine Beweisidee ist daher korrekt.

> Bei b) bin ich noch unsicherer. Wenn ich mir bspw. f(x)=x
> als Teil der Funktionenfamilie anschaue, dann bringt eine
> 2007-Potenz drastische Folgen mit sich... insbesondere
> dürfte das [tex]\delta[/tex] ein anderes werden - in Abhängigkeit von
> der gewählten Funktion.

Zunaechst einmal ist der Raum $C([0,1])$ eine Algebra, das heisst die Multiplikation fuer Funktionen ist definiert, daher ist [mm] $f^{2007}\in [/mm] C([0,1])$. Was du sagst hinsichtlich des [mm] $\delta$ [/mm] ist im Allgemeinen richtig. Es gilt zu ueberlegen, ob es ein Gegenbeispiel gibt.
Ueberlege dir, was fuer Folgen das Potenznehmen hat

[mm] \vert [/mm] x-y [mm] \vert <\delta \Rightarrow \vert f(x)-f(y)\vert<\epsilon \Rightarrow [/mm]
[mm] \vert f(x)^2 [/mm] - [mm] f(y)^2\vert\leq \vert f(x)\vert \vert [/mm] f(x) - [mm] f(y)\vert [/mm] + [mm] \vert f(y)\vert \vert f(x)-f(y)\vert<\epsilon(\vert [/mm] f(x) [mm] \vert [/mm] + [mm] \vert [/mm] f(y) [mm] \vert)\leq \epsilon [/mm] 2 [mm] \parallel f\parallel_{\infty} [/mm]

Das bedeutet, dass dir beim Potenzieren mit $2$, die Maximumsnorm von $f$ alles kaputt machen kann. Das gleiche - mit ein wenig Aufwand - kannst du beim Potenzieren mit 2007 folgern. Jetzt musst du nur noch eine geeignete Familie angeben, fuer die die gleichgrd. Stetigkeit gilt, die aber nach Potenznehmen nicht mehr gleichgrd. stetig ist..:-)

> Wäre wie immer für einen Wink mit dem Zaunpfahl sehr
> dankbar.
>  
> Namárie,
>  sagt ein Lary, wo nun erstmal frühstücken geht

Bezug
                
Bezug
Gleichgradige Stetigkeit [0,1]: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Fr 25.05.2007
Autor: laryllan

Herzlichen Dank für den Hinweis.
Der Def-Bereich hat mich irgendwie wirklich verwirrt.

Namárie,
sagt ein Lary, wo das jetzt mal bombensicher aufschreiben geht.

Bezug
                
Bezug
Gleichgradige Stetigkeit [0,1]: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:48 Fr 25.05.2007
Autor: laryllan

Aloha hé,

beim sauber-aufchreiben habe ich nun erstmal versucht eine solche Familie zu finden. So wirklich fündig bin ich leider nicht geworden. Allerdings kam mir just noch eine andere Idee in den Sinn:

"Gleichgradige Stetigkeit" bedeutet (so hab ich es mir zumindest aufgeschrieben):

Für alle y aus dem Intervall [0,1] und für alle [mm] \epsilon [/mm] größer Null existiert ein [mm] \delta [/mm] für alle Funktionen der Familie [mm] \Phi, [/mm] so dass für alle x aus [0,1] mit |x - y| < [mm] \delta [/mm] gerade |f(y) - f(x)| [mm] \epsilon [/mm] gilt.

Das heißt für mich dass "gleichgradige Stetigkeit" gerade bedeutet: [mm] \delta [/mm] ist unabhängig von den x (es existiert ein ganz bestimmtes [mm] \delta, [/mm] dass ich um alle Funktionen eine [mm] \delta [/mm] - Umgebung legen kann und entsprechend "drin" bleibe).

Wenn ich das bei b) so mache wie du vorgeschlagen hast, bekomme ich ja raus:

[tex] |f(y)^{2} - f(x)^{2}| \le 2 \epsilon * max \{ |f(y), f(x) \} [/tex].

So wie das ausschaut, erhalte ich somit, dass Delta bereits im Falle der Quadratur von [tex] f [/tex] nicht mehr unabhängig von [tex] x [/tex] für alle Funktionen [tex] f \in \Phi [/tex] gilt. Wäre ich damit nicht bereits fertig?

Namárie,
sagt ein Lary, wo sich sehr freuen würde, wenn er das richtig verstanden hätte

Bezug
                        
Bezug
Gleichgradige Stetigkeit [0,1]: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Fr 25.05.2007
Autor: kornfeld


> Das heißt für mich dass "gleichgradige Stetigkeit" gerade
> bedeutet: [mm]\delta[/mm] ist unabhängig von den x (es existiert ein
> ganz bestimmtes [mm]\delta,[/mm] dass ich um alle Funktionen eine
> [mm]\delta[/mm] - Umgebung legen kann und entsprechend "drin"
> bleibe).

Korrekt

> Wenn ich das bei b) so mache wie du vorgeschlagen hast,
> bekomme ich ja raus:
>  
> [tex]|f(y)^{2} - f(x)^{2}| \le 2 \epsilon * max \{ |f(y), f(x) \} [/tex].
>  
> So wie das ausschaut, erhalte ich somit, dass Delta bereits
> im Falle der Quadratur von [tex]f[/tex] nicht mehr unabhängig von [tex]x[/tex]
> für alle Funktionen [tex]f \in \Phi[/tex] gilt. Wäre ich damit nicht
> bereits fertig?

Fast. Da nirgends steht, wie diese Familie ausschaut, darfst du dir getrost eine gleichgradig stetige Familie ausdenken, die nach Potenznehmen nicht mehr diese Eigenschaft hat, naemlich, dass das [mm] $\delta$ [/mm] nicht mehr nur von [mm] $\epsilon$ [/mm] abhaengt. Ich habe ein bisschen mit der Folge [mm] $f_n(x)=x+n$, $n\in\IN$ [/mm] herumgespielt. Hilft dir das weiter?

LG Kornfeld

> Namárie,
>  sagt ein Lary, wo sich sehr freuen würde, wenn er das
> richtig verstanden hätte

Bezug
                                
Bezug
Gleichgradige Stetigkeit [0,1]: Abermals danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Fr 25.05.2007
Autor: laryllan

Ja, das hilft mir weiter, danke.

Namárie,
sagt ein Lary, wo dann mal weiter schreibt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]