www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Gleichgradige Integrierbarkeit
Gleichgradige Integrierbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgradige Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 14.09.2015
Autor: Fry

Aufgabe
Sei [mm](X_n)_{n\in\mathbb N}[/mm] eine Folge von unabhängigen, id.verteilten Zufallsgrößen mit
[mm]P(X_1=-1)=\frac{1}{2}=P(X_1=1)[/mm]. Sei [mm]S_n=\sum_{i=1}^{n}X_i[/mm].
Zeigen Sie, dass [mm](S_n)_n[/mm] nicht gleichgradig integrierbar ist.

(d.h. [mm]\lim_{a\to\infty}\sup_{n\in\mathbb N}E[|S_n|*1_{\{|S_n|>a\}}]=0[/mm] )



Hallo zusammen,

also ich habe mir einen Lösungsweg überlegt, allerdings frage ich mich, ob es nicht auch einen anderen Weg gibt. Hättet ihr da eine Idee?

Mein Weg (stimmt der?):
[mm](S_n)_n[/mm] ist ein Martingal bzgl. der kan. Filtration.
Annahme: [mm] $(S_n)_n$ [/mm] ist gleichgradig integrierbar. Da [mm] $(S_n)$ [/mm] Martingal ist, muss [mm] $(S_n)$ [/mm] P-fast sicher konvergieren, allerdings gilt nach dem Satz von Chung-Fuchs [mm]\limsup_{n\to\infty} S_n=\infty[/mm]
 und [mm]\liminf_{n\to\infty} S_n=-\infty[/mm] fast sicher.

Viele Grüße
Fry

        
Bezug
Gleichgradige Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 14.09.2015
Autor: Gonozal_IX

Hiho,

deine Idee ist ok.
Es müsste aber sogar möglich sein direkt $ [mm] \lim_{a\to\infty}\sup_{n\in\mathbb N}E[|S_n|\cdot{}1_{\{|S_n|>a\}}]\not= [/mm] 0 $ zu zeigen.

Rein intuitiv (und nach skizzenhaften Umformungen) müsste eigentlich [mm] $\sup_{n\in\mathbb N}E[|S_n|\cdot{}1_{\{|S_n|>a\}}] [/mm] = [mm] \infty$ [/mm] gelten.

Gruß,
Gono

Bezug
                
Bezug
Gleichgradige Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 16.09.2015
Autor: Fry

Hey Gono,

danke für deine Antwort!
Könntest du vielleicht deine Ansätze posten?

VG

Bezug
                        
Bezug
Gleichgradige Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Do 17.09.2015
Autor: Gonozal_IX

Hiho,

mein erster Ansatz begründete sich auf einen Rechenfehler ^^

Aber: Wenn ich mich nicht verrechnet habe, müsste man für gerade [mm] $n\ge [/mm] a$ bekommen:

[mm] $E[|S_n|\cdot{}1_{\{|S_n|>a\}}] [/mm] = [mm] \bruch{2}{4^n}\sum_{k=0}^\frac{n-a}{2}(a+2k)\vektor{n \\ k}$ [/mm]

Ich bin noch am grübeln, wie davon das Supremum über n aussieht....

Gruß,
Gono

Bezug
                                
Bezug
Gleichgradige Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Fr 18.09.2015
Autor: Fry

Vielen Dank!
Kann man es vielleicht nach unten abschätzen?

VG
Fry

Bezug
                                        
Bezug
Gleichgradige Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Sa 19.09.2015
Autor: Gonozal_IX

Hallo Fry,

>  Kann man es vielleicht nach unten abschätzen?

meine Abschätzungen nach unten lieferten immer nur ein [mm] $\ge [/mm] 0$ und das ist natürlich gar nicht zielführend :-)
Waren also immer zu stark. Bin für Ideen aber jederzeit offen.


Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]