www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Gleichgr. Stetigkeit
Gleichgr. Stetigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgr. Stetigkeit: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 23:10 Mo 27.05.2013
Autor: Lustique

Aufgabe
Es sei $I$ eine Indexmenge, $a, b, c [mm] \in \mathbb{R}$ [/mm] mit $a < b$ und $c > 0$. Für $j [mm] \in [/mm] I$ sei [mm] $f_j \in C^1 [/mm] ([a, b])$ mit

[mm] $\int_a^b \lvert f_j'(x)\rvert^2\,\mathrm{d}x
Zeigen Sie, dass die Familie [mm] $\mathcal{F} [/mm] = [mm] \{f_j : j \in I\}$ [/mm] gleichgradig stetig ist.

Hallo zusammen,

da ich mir bei folgendem Lösungsweg nicht sicher bin, wäre ich dankbar, wenn sich jemand meine Lösung angucken und kontrollieren könnte (ich hoffe mal, das ist notationell einigermaßen in Ordnung...):

Es gilt mit [mm] $\int_a^b \lvert f_j'(x)\rvert^2\,\mathrm{d}x
Seien [mm] $\epsilon>0$, $\delta:=\frac{\epsilon}{\sqrt{c}}$. [/mm] Dann gilt für alle [mm] $x,y\in[a,b]$ [/mm] mit [mm] $\lvert x-y\rvert<\delta$ [/mm] und für alle [mm] $f_j\in\mathcal{F}$: [/mm]

[mm] $\lvert f_j(x)-f_j(y)\rvert=\left\lvert \int_y^x f_j'(z)\,\mathrm{d}z\right\rvert\overset{(\star)}{\leqslant} \lvert x-y\rvert \cdot \lVert f_j'\rVert_{\mathcal{L}^2(B_\delta(x))}< \lvert x-y\rvert \cdot \lVert f_j'\rVert_{\mathcal{L}^2([a,b])} [/mm] < [mm] \lvert x-y\rvert\cdot \sqrt{c}<\epsilon$. [/mm]

Funktioniert das so, oder muss ich bei [mm] $(\star)$ [/mm] noch irgendwie ein Supremum/Minimum unterbringen? Oder geht es so gar nicht?

        
Bezug
Gleichgr. Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Di 28.05.2013
Autor: fred97


> Es sei [mm]I[/mm] eine Indexmenge, [mm]a, b, c \in \mathbb{R}[/mm] mit [mm]a < b[/mm]
> und [mm]c > 0[/mm]. Für [mm]j \in I[/mm] sei [mm]f_j \in C^1 ([a, b])[/mm] mit
>  
> [mm]\int_a^b \lvert f_j'(x)\rvert^2\,\mathrm{d}x
>  
> Zeigen Sie, dass die Familie [mm]\mathcal{F} = \{f_j : j \in I\}[/mm]
> gleichgradig stetig ist.
>  Hallo zusammen,
>
> da ich mir bei folgendem Lösungsweg nicht sicher bin,
> wäre ich dankbar, wenn sich jemand meine Lösung angucken
> und kontrollieren könnte (ich hoffe mal, das ist
> notationell einigermaßen in Ordnung...):
>
> Es gilt mit [mm]\int_a^b \lvert f_j'(x)\rvert^2\,\mathrm{d}x
>
> Seien [mm]\epsilon>0[/mm], [mm]\delta:=\frac{\epsilon}{\sqrt{c}}[/mm]. Dann
> gilt für alle [mm]x,y\in[a,b][/mm] mit [mm]\lvert x-y\rvert<\delta[/mm] und
> für alle [mm]f_j\in\mathcal{F}[/mm]:
>
> [mm]\lvert f_j(x)-f_j(y)\rvert=\left\lvert \int_y^x f_j'(z)\,\mathrm{d}z\right\rvert\overset{(\star)}{\leqslant} \lvert x-y\rvert \cdot \lVert f_j'\rVert_{\mathcal{L}^2(B_\delta(x))}< \lvert x-y\rvert \cdot \lVert f_j'\rVert_{\mathcal{L}^2([a,b])} < \lvert x-y\rvert\cdot \sqrt{c}<\epsilon[/mm].

Das [mm] \le [/mm] mit dem Stern ist nicht korrekt, denn im Integral  [mm] \int_y^x f_j'(z)\,\mathrm{d}z [/mm] steht kein Quadrat !

>
> Funktioniert das so, oder muss ich bei [mm](\star)[/mm] noch
> irgendwie ein Supremum/Minimum unterbringen? Oder geht es
> so gar nicht?  


Es ist die Frage, wie man das Quadrat reinbringt.

Sei g(x):=1 für alle x [mm] \in [/mm] [a,b]

Wir betrachten zunächst x,y [mm] \in [/mm] [a,b]  mit y [mm] \ge [/mm] x. Für [mm] f_j [/mm] schreibe ich einfach f.


$|f(x)-f(y)| [mm] =|\integral_{x}^{y}{f'(t) dt}| \le \integral_{x}^{y}{|f'(t)| dt}= \integral_{x}^{y}{|g(t)|*|f'(t)| dt}.$ [/mm]

Mit der Cauchy-Schwarzschen Ungl. folgt:

$|f(x)-f(y)| [mm] \le (\integral_{x}^{y}{|g(t)|^2 dt})^{1/2}* (\integral_{x}^{y}{|f'(t)|^2 dt})^{1/2}=\wurzel{y-x}*(\integral_{x}^{y}{|f'(t)|^2 dt})^{1/2} \le \wurzel{y-x}*(\integral_{a}^{b}{|f'(t)|^2 dt})^{1/2} \le \wurzel{y-x}*\wurzel{c}= \wurzel{|x-y|}*\wurzel{c}.$ [/mm]

Den Fall x>y behandelt man genauso. Somit haben wir:

   |f(x)-f(y)| [mm] \le \wurzel{|x-y|}*\wurzel{c}. [/mm]

So, jetzt kanst Du mit [mm] \varepsilon [/mm] und [mm] \delta [/mm] anrücken

FRED



Bezug
                
Bezug
Gleichgr. Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Do 30.05.2013
Autor: Lustique

Hallo FRED,

danke für deine Lösung (die 1-Ergänzung wäre mir so wahrscheinlich gar nicht eingefallen...)! Da habe ich es mir wohl zu einfach gemacht. Daraufhin habe ich dann noch mal meine Lösungen der anderen Teilaufgaben überprüft und ebenfalls korrigiert. Danke auch dafür, auch wenn die Fehler da andere waren! :D



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]