www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fachdidaktik" - Gibt es rationale Lösungen...?
Gibt es rationale Lösungen...? < Fachdidaktik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gibt es rationale Lösungen...?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:34 Sa 20.05.2006
Autor: Curley80

Aufgabe
Gibt es rationale Lösungen der Gleichung [mm] x^4 [/mm] + [mm] 3x^3 [/mm] = 100? Falls ja, welche; falls nein, bitte beweisen!!!

Hallo ;)

Zu der obig angegebenen Gleichung sollten wir zunächst einen modernisierten Auszug aus dem 30. Kapitel der berühmten "Ars magna"  von Girolamo Cardano (1545) - englische Version - lesen, und anschließend in eigenen Worten formulieren, wie Cardano die Gleichung löst. Das war ganz schön viel Arbeit, aber machbar...

Die obig gestellte Aufgabe ist die dazugehörige c)-Aufgabe. Ich würde nun einfach mal sagen, dass es keine rationalen Lösungen dieser Gleichung gibt; es gibt entweder ganzzahlige Lösungen oder irrationale Lösungen, aber wie soll ich das denn jetzt schon wieder beweisen!?

Um eine hilfreiche Antwort würde ich mich sehr, sehr freuen....


Vielen Dank schon mal im Voraus.


Viele Grüße, Curley

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Gibt es rationale Lösungen...?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Sa 20.05.2006
Autor: felixf

Hallo Curley!

Das ist eher eine Zahlentheoriefrage als eine Fachdidaktik-Frage, oder?

> Gibt es rationale Lösungen der Gleichung [mm]x^4[/mm] + [mm]3x^3[/mm] = 100?
> Falls ja, welche; falls nein, bitte beweisen!!!
>  Hallo ;)
>  
> Die obig gestellte Aufgabe ist die dazugehörige c)-Aufgabe.
> Ich würde nun einfach mal sagen, dass es keine rationalen
> Lösungen dieser Gleichung gibt; es gibt entweder
> ganzzahlige Lösungen oder irrationale Lösungen, aber wie
> soll ich das denn jetzt schon wieder beweisen!?

Es kann auch ganzzahlige und irrationale Loesungen geben. Du meinst wahrscheinlich: Eine Loesung ist entweder ganzzahlig oder irrational.

Und das kann man recht einfach zeigen, es ist genau der gleiche Trick wie man zeigt dass [mm] $\sqrt{2}$ [/mm] nicht rational ist. Du nimmst an, dass du eine rationale Loesung $x = [mm] \frac{p}{q}$ [/mm] hast mit $p, q [mm] \in \IZ$, [/mm] $q [mm] \neq [/mm] 0$ und $p, q$ teilerfremd. Dann setzt du $x = [mm] \frac{p}{q}$ [/mm] ein und multiplizierst die Gleichung mit [mm] $q^4$. [/mm] Jetzt bringst du alle Summanden, die eine Potenz von $q$ enthalten, auf die eine Seite und den Rest auf die andere Seite. Auf der anderen Seite steht nur noch [mm] $p^4$ [/mm] (evtl. mit Vorzeichen).

Angenommen, $q [mm] \neq \pm [/mm] 1$. Dann gibt es eine Primzahl [mm] $\hat{q}$, [/mm] die $q$ teilt. Diese teilt also die gesamte eine Seite der Gleichung, muss also auch die andere Seite [mm] ($\pm p^4$) [/mm] teilen. Da [mm] $\hat{q}$ [/mm] eine Primzahl ist und [mm] $p^4 [/mm] = p [mm] \cdot [/mm] p [mm] \cdot [/mm] p [mm] \cdot [/mm] p$ ein Produkt von ganzen Zahlen, muss [mm] $\hat{q}$ [/mm] auch einen der Faktoren teilen, also $p$. Dann ist [mm] $\hat{q}$ [/mm] jedoch ein Teiler von $p$ und $q$, womit $p$ und $q$ nicht teilerfremd waren!

Also gibt es keine Primzahl, die $q$ teilt, womit $q$ nur $1$ oder $-1$ sein kann. Damit ist $x = [mm] \frac{p}{q} \in \IZ$. [/mm]

Damit hast du jetzt, dass eine Loesung entweder rational oder irrational ist.

Jetzt brauchst du noch folgenen Trick: Ist $x [mm] \in \IZ$ [/mm] eine ganzzahlige Loesung von [mm] $x^4 [/mm] + 3 [mm] x^3 [/mm] = 100$, so ist $x$ ein Teiler von $100$. Das kannst du hier sofort ablesen: Da $x$ offensichtlich ein Teiler von [mm] $x^4 [/mm] + 3 [mm] x^3$ [/mm] ist, ist $x$ auch ein Teiler von $100$. Und Teiler von 100 gibt es nicht sooo viele [mm] ($\pm [/mm] 1$, [mm] $\pm [/mm] 2$, [mm] $\pm [/mm] 5$, [mm] $\pm [/mm] 10$, [mm] $\pm [/mm] 20$, [mm] $\pm [/mm] 25$, [mm] $\pm [/mm] 50$, [mm] $\pm [/mm] 100$), die du alle durchprobieren kannst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]