www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - GgT bei Euklid. Algorithmus
GgT bei Euklid. Algorithmus < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

GgT bei Euklid. Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Mi 28.02.2007
Autor: oldpigweed

Hallo,

also,...nach Anwendung des EA bekommt man ja einen größten gemeinsamen Teiler.
Als schnelles Beispiel,... gesucht wird der ggT von 969 und 627.
  969=1·627+342
  627=1·342+285
  342=1·285+57
  285=5·57+0      [mm] \Rightarrow [/mm]     ggT ist also 57.

Warum funktioniert dieses Verfahren? Oder anders,..warum ist die 57 der ggT von 969, 627, 342 und 285 ... gibts da ne Erklärung für?

Bin für jede Idee dankbar.. :o)

Mark
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
GgT bei Euklid. Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mi 28.02.2007
Autor: Bastiane

Hallo oldpigweed!

>  Als schnelles Beispiel,... gesucht wird der ggT von 969
> und 627.
>    969=1·627+342
>    627=1·342+285
>    342=1·285+57
>    285=5·57+0      [mm]\Rightarrow[/mm]     ggT ist also 57.
>  
> Warum funktioniert dieses Verfahren? Oder anders,..warum
> ist die 57 der ggT von 969, 627, 342 und 285 ... gibts da
> ne Erklärung für?

Sicher gibt es da eine Erklärung für... Warum der Algo so funktioniert, kann ich dir im Moment nicht sagen, vielleicht findest du bei Wikipedia etwas? Aber warum das der ggT ist, kann ich dir sagen: und zwar kann man das per Hand rechnen, indem man beide Zahlen in Primfaktoren zerlegt: 969=3*17*19 und 627=3*11*19. Und da siehst du, dass die Teiler 3 und 19 Teiler von beiden Zahlen sind, also ist der ggT das Produkt von diesen beiden. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
GgT bei Euklid. Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mi 28.02.2007
Autor: oldpigweed

Huhu Bastiane,

also erstmal Danke für die schnelle Antwort und verständliche Erklärung.

Habe das hier noch im Netz gefunden und werd nich schlau draus ..
"... Es sei a=q*b + r.  
Dann ist jeder gemeinsame Teiler von a und b auch gemeinsamer Teiler von b und r. Denn wegen a=q*b + r gilt a-q*b = r und wenn eine Zahl die linke Seite dieser Gleichung teilt, so muss sie auch die rechte Seite teilen.  
Umgekehrt: Jeder gemeinsame Teiler von b und r teilt auch a wegen a=q*b+r.  
a und b haben also dieselben gemeinsamen Teiler wie b und r.  
Also Ta∩Tb = Tb∩Tr und daher auch ggT(a,b)=ggT(b,r).

Anwendungs-Beispiel

Es gilt zum Beispiel, dass der ggT von 96 und 36 derselbe ist, wie der von 36 und 24, weil 96 beim Teilen durch 36 den Rest 24 lässt. Jetzt können wir die Zahlen 36 und 24 als unsere neuen Zahlen a und b nehmen und von vorne beginnen. Insgesamt erhalten wir so den „euklidischen Algorithmus“:

      96 = 2·36+24

      36 = 1·24+12

      24 = 2·12+0

Also gilt ggT(96,36)=ggT(36,24)=ggT(24,12)=ggT(12,0).  
Und da 12 die 0 teilt, folgt ggT(96,36)=ggT(12,0)=12. Also ggT(96,36)=12. "

Öhemm,...tja,..also ...vielleicht könnte das ja noch Jemand aufdröseln..?


Mark



Bezug
                        
Bezug
GgT bei Euklid. Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 28.02.2007
Autor: leduart

Hallo
Der Clou an der Sache ist, dass man dran denken muss: Wenn 2 Zahlen durch dieselbe Zahl teilbar sind, dann ist auch ihre Differenz durch die Zahl teilbar!
Also Dein Beispiel gesucht die Zahl z die 969 und 627 teilt
wenn sie die 2 teilt, dann auch die Differenz also 342
also such ich z was 627 und 342 teilt, wenns die Teilt dann auch die Differenz also 285.
z muss 342 und 285 teilen, also auch 57
57 teilt 285 und sich,  und jetzt kannst du wieder rueckwaerts gehen, ..dann teilt es auch die Summe
Du kannst also hinten anfangen und immer sagen teilt das eine und das andere, deshalb auch die Summe,
Oder so wie ich vorne anfangen. und immer die Differenzen;

Das Verfahren ist sehr gut und nuetzlich, denn richtig grosse Zahlen in Primfaktoren zerlegen wird sehr langwierig.
und jetzt weiss ich direkt 123456789 und 123456787
haben den ggT 1 (
969=1·627+342
  627=1·342+285
  342=1·285+57
  285=5·57+0      $ [mm] \Rightarrow [/mm] $     ggT ist also 57.
Gruss leduart

Bezug
                                
Bezug
GgT bei Euklid. Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mi 28.02.2007
Autor: oldpigweed

Hallo leduart,

dank Dir für Deine Bemühung. Werde mal ne Aufgabe rechnen und hoffe es entstehen keine Fragen :o).

Mark

Bezug
        
Bezug
GgT bei Euklid. Algorithmus: ggT
Status: (Antwort) fertig Status 
Datum: 21:18 Mi 28.02.2007
Autor: heyks

Hallo Marc,

Du kannst dich schnell von davon überzeugen , daß dieser Algoritmus einen gemeinsamen Teiler von zwei natürlichen Zahlen liefert, denn durch
"Rückwärtseinsetzen" siehst Du, das  a und b als Vielfaches des letzen Restes der Divison (in Deinem Beispiel also 57 ) dargestellt werden können.
Der Nachweis , dass dieser Rest wirklich der ggT von a und b liegt daran, dass jeder gemeinsame Teiler von a und b den ggT teilt .

LG

Heiko

Bezug
                
Bezug
GgT bei Euklid. Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mi 28.02.2007
Autor: oldpigweed

Hallo Heiko,

danke für diese Erklärung.

Mark

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]