www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Gewinnschwelle berechn.
Gewinnschwelle berechn. < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnschwelle berechn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 19.09.2012
Autor: Giraffe

Aufgabe
Guten Morgen,

gegeb. sind 3 Fkt.

Ges.kosten-Fkt.    [mm] K(x)=x^3 -18x^2 [/mm] +110x +200

Erlös-Fkt.         E(x)=60x

Gewinn-Fkt.       G(x)= [mm] -x^3 +18x^2 [/mm] -50x -200

1 GE=10.000,-
1 ME=10.000 Stck.

Gib die Gewinnschwelle u. die -grenze (nähergsweise, d.h. mit 2 Nachkommastellen) an!


Was ich bisher weiß (ich fange erst mit diesem Thema an):
Der Beginn einer Gewinn-ZONE ist die G.schwelle, das Ende die G.grenze.
Und ich glaube sogar, dass die Kosten-Fkt. immer unterhalb der Erlös-Fkt. liegt. Äh, das muss sogar so sein, sonst gäbe es ja keine Gewinne.
D.h. es sind die Schnittpunkte von  K(x) u. E(x)zu berechnen.
Mal vorher überlegt, bevor drauflosgerechnet:
Wenn es 3 Schnittpunkte gibt bin ich angeschmiert.
Der kleinere x-Wert ist immer der, der die Gewinnschwelle angibt,
der größere die G-grenze.

1.te Frage:
Tja, was ist eigentl. die G-schwelle - der x-Wert oder y-Wert oder die Koordinate aus beidem?

Um an die Schnittpunkte (G-schwelle u. G-grenze) zu kommen
G(x)=K(x)
[mm] 0=x^3 -18x^2 +80x^2+80x [/mm] +200

Weiter kann ich nicht.
x ausklam. ist leider nicht
Mit Teiler von 200 auch nicht, weil der Koeffizient von [mm] x^3 [/mm] eins ist u. damit ungünstig.
Substitution doch nur bei Polynomen ab [mm] x^4 [/mm] oder?
Also was bleibt? Teiler von 200 als Nullst. raten?
x=1      0 ungleich 263
x=2      0 ungleich 296
x=3      0 ungleich 305
Ich entferne mich immer weiter von der Null u. habe aber auch keine Lust weiter zu probieren. Klar, kann es irgendwann einen Umkehr-Pkt. geben. Aber nur evtl.

Hätte ich vielleicht gleich das x transformieren müssen in 1 ME=10.000 Stck., also x=10.000
(keine Lust das auszuprobieren - Angst vor Frust)

Hoffentl. ist jmd. da, der mir unter die Arme greift!
Gruß
Sabine




        
Bezug
Gewinnschwelle berechn.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Mi 19.09.2012
Autor: fred97


> Guten Morgen,

Hallo Sabine,

ich bins mal wieder , der Fred.


>  
> gegeb. sind 3 Fkt.
>  
> Ges.kosten-Fkt.    [mm]K(x)=x^3 -18x^2[/mm] +110x +200
>  
> Erlös-Fkt.         E(x)=60x
>  
> Gewinn-Fkt.       G(x)= [mm]-x^3 +18x^2[/mm] -50x -200
>  
> 1 GE=10.000,-
> 1 ME=10.000 Stck.
>  
> Gib die Gewinnschwelle u. die -grenze (nähergsweise, d.h.
> mit 2 Nachkommastellen) an!
>  Was ich bisher weiß (ich fange erst mit diesem Thema
> an):
>  Der Beginn einer Gewinn-ZONE ist die G.schwelle, das Ende
> die G.grenze.
>  Und ich glaube sogar, dass die Kosten-Fkt. immer unterhalb
> der Erlös-Fkt. liegt. Äh, das muss sogar so sein, sonst
> gäbe es ja keine Gewinne.
>  D.h. es sind die Schnittpunkte von K(x) u. E(x) zu
> berechnen.
>  Mal vorher überlegt, bevor drauflosgerechnet:
>  Wenn es 3 Schnittpunkte gibt bin ich angeschmiert.
>  Der kleinere x-Wert ist immer der, der die Gewinnschwelle
> angibt,
>  der größere die G-grenze.
>  
> 1.te Frage:
>  Tja, was ist eigentl. die G-schwelle - der x-Wert oder
> y-Wert oder die Koordinate aus beidem?



Der x - Wert.


>  
> Um an die Schnittpunkte (G-schwelle u. G-grenze) zu kommen
>  G(x)=K(x)


Das ist nicht die richtige Gleichung !

Du benötigst die x- Werte für die K(x)=Ex) gilt.

Also: [mm] x^3-18x^2+50x+200=0. [/mm]


Mit Raten einer Nullstelle kommst Du hier nicht weiter.

In der Aufgabenstellung steht ja auch: "nähergsweise, d.h. mit 2 Nachkommastellen"

Hier kannst Du Dir die Nullstellen berechnen lassen:

http://www.arndt-bruenner.de/mathe/scripts/polynome.htm



Gruß FRED


>  [mm]0=x^3 -18x^2 +80x^2+80x[/mm] +200
>  
> Weiter kann ich nicht.
>  x ausklam. ist leider nicht
>  Mit Teiler von 200 auch nicht, weil der Koeffizient von
> [mm]x^3[/mm] eins ist u. damit ungünstig.
>  Substitution doch nur bei Polynomen ab [mm]x^4[/mm] oder?
>  Also was bleibt? Teiler von 200 als Nullst. raten?
>  x=1      0 ungleich 263
>  x=2      0 ungleich 296
>  x=3      0 ungleich 305
>  Ich entferne mich immer weiter von der Null u. habe aber
> auch keine Lust weiter zu probieren. Klar, kann es
> irgendwann einen Umkehr-Pkt. geben. Aber nur evtl.
>  
> Hätte ich vielleicht gleich das x transformieren müssen
> in 1 ME=10.000 Stck., also x=10.000
>  (keine Lust das auszuprobieren - Angst vor Frust)
>  
> Hoffentl. ist jmd. da, der mir unter die Arme greift!
>  Gruß
>  Sabine
>  
>
>  


Bezug
                
Bezug
Gewinnschwelle berechn.: Wirtschft.M. - ökonom. Fkt.
Status: (Frage) beantwortet Status 
Datum: 15:12 Mi 19.09.2012
Autor: Giraffe

Hey Fred,
ich Dussel,
um Gewinnzone zu ermitteln
natürl. K(x)=E(x).
Aber wegen der Nullst. ist es ein erlaubtes Schülermittel so eine Automatik zu benutzen?
Gruß
Sabine

Bezug
                        
Bezug
Gewinnschwelle berechn.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 19.09.2012
Autor: fred97


> Hey Fred,
>  ich Dussel,
> um Gewinnzone zu ermitteln
>  natürl. K(x)=E(x).
>  Aber wegen der Nullst. ist es ein erlaubtes Schülermittel
> so eine Automatik zu benutzen?

Dürft Ihr einen GTR verwenden ? Auf manchen gibt es Programme zur näherungsweisen Berechnungen von Nulstellen.

FRED

>  Gruß
>  Sabine


Bezug
                                
Bezug
Gewinnschwelle berechn.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mi 19.09.2012
Autor: Giraffe

durch das Versehen hat sich nun die Gleichung geändert in

[mm] 0=x^3 -18x^2 [/mm] +50x +200

Auch die kriege ich mit den mir bisher bekannten Verfahren zur Nullst.-Bestimmg. nicht gelöst.

Alle Schüler haben doch heutzutage einen GTR oder?
Aber was machen die, deren GTR kein Progr. zur Nullst.-Bestimmg. hat?

Grüße für Fred von Sabine

Bezug
                                        
Bezug
Gewinnschwelle berechn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 19.09.2012
Autor: Giraffe

P.S.:
G(x)= [mm] -x^3 +18x^2 [/mm] -50x +200
Zu dieser Fkt. soll eine Wertetab. erstellt werden (1-20)
1 GE = 10.000 Stück soll wohl einem x entsprechen.
D.h. wenn ich G(1) ausrechne rechne ich aus wieviel Euros ich Gewinn mache, wenn 10.000 Stück produziert werden oder muss G(10.000) ausgerechnet werden?


Bezug
                                                
Bezug
Gewinnschwelle berechn.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 19.09.2012
Autor: MathePower

Hallo Giraffe,

> P.S.:
>  G(x)= [mm]-x^3 +18x^2[/mm] -50x +200
>  Zu dieser Fkt. soll eine Wertetab. erstellt werden (1-20)
>  1 GE = 10.000 Stück soll wohl einem x entsprechen.
>  D.h. wenn ich G(1) ausrechne rechne ich aus wieviel Euros
> ich Gewinn mache, wenn 10.000 Stück produziert werden oder
> muss G(10.000) ausgerechnet werden?
>  


Nein.

Die Gewinneinheit sind doch 10000 Euro, d.h.
G(1) gibt an wieviel 10000 Euro Gewinn gemacht werden,
wenn  10000 Stück produziert werden.


Gruss
MathePower

Bezug
                                                        
Bezug
Gewinnschwelle berechn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 19.09.2012
Autor: Giraffe


>  >  G(x)= [mm]-x^3 +18x^2[/mm] -50x +200
>  >  Zu dieser Fkt. soll eine Wertetab. erstellt werden
> (1-20)
>  > 1 GE = 10.000 Stück soll wohl einem x entsprechen.

>  > D.h. wenn ich G(1) ausrechne rechne ich aus wieviel

>  > Euros ich Gewinn mache, wenn 10.000 Stück pro-

>  > duziert werden oder muss G(10.000) ausgerechnet

>  > werden?

  

> Nein.
> Die Gewinneinheit sind doch 10000 Euro, d.h.
> G(1) gibt an wieviel 10000 Euro Gewinn gemacht werden,
> wenn  10000 Stück produziert werden.
> Gruss
> MathePower


Guten Abend Mathe Power,
ich habe mich leider verschrieben; (GE interessiert mich jetzt erstmal nicht).
Ich soll eine Wertetab. machen mit 1 ME=10.000 Stück.
G(1)= 267
D.h. ein x entspricht 10.000 Stück.
Produziere ich diese fallen dabei 267 GE für mich ab, wobei 1 GE 10.000 Euros entsprechen, also 2.670.000,-
Ist das so jetzt richtig?
Für nochmaliege Antw. vielen DANK
mfg
Sabine


Bezug
                                                                
Bezug
Gewinnschwelle berechn.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mi 19.09.2012
Autor: MathePower

Hallo Giraffe,

> >  >  G(x)= [mm]-x^3 +18x^2[/mm] -50x +200

>  >  >  Zu dieser Fkt. soll eine Wertetab. erstellt werden
> > (1-20)
>  >  > 1 GE = 10.000 Stück soll wohl einem x entsprechen.

>  >  > D.h. wenn ich G(1) ausrechne rechne ich aus wieviel

> >  > Euros ich Gewinn mache, wenn 10.000 Stück pro-

>  >  > duziert werden oder muss G(10.000) ausgerechnet

>  >  > werden?

>    
> > Nein.
>  > Die Gewinneinheit sind doch 10000 Euro, d.h.

>  > G(1) gibt an wieviel 10000 Euro Gewinn gemacht werden,

>  > wenn  10000 Stück produziert werden.

>  > Gruss

>  > MathePower

>
>
> Guten Abend Mathe Power,
>  ich habe mich leider verschrieben; (GE interessiert mich
> jetzt erstmal nicht).
>  Ich soll eine Wertetab. machen mit 1 ME=10.000 Stück.
>  G(1)= 267
>  D.h. ein x entspricht 10.000 Stück.
> Produziere ich diese fallen dabei 267 GE für mich ab,
> wobei 1 GE 10.000 Euros entsprechen, also 2.670.000,-
>  Ist das so jetzt richtig?


Ja, das ist jetzt so richtig.


>  Für nochmaliege Antw. vielen DANK
>  mfg
>  Sabine
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]