www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Gesucht ist eine Matrix A
Gesucht ist eine Matrix A < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesucht ist eine Matrix A: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 14.02.2007
Autor: sonderbar

Aufgabe
a)Gesucht ist eine Matrix A derart, dass  x (t) = [mm] \begin{pmatrix} e^{2t} & -e^t \\ e^{2t} & e^t \end{pmatrix} [/mm]  Lösung des folgenden Anfangswertproblem ist :  x´=A*x     x(0)= [mm] \begin{pmatrix} 0 \\ 2 \end{pmatrix} [/mm]
b) Bestimmen sie die Lösung des folgenden Problems
x´= [mm] \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} [/mm] *x      
x(3)= [mm] \begin{pmatrix} 0 \\ 0 \end{pmatrix} [/mm]

Kann mir jemand eine tipp geben, wie ich die Aufgaben anpacken kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

danke sonderbar

        
Bezug
Gesucht ist eine Matrix A: Aufgae a)
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 14.02.2007
Autor: ullim

Hi,

[mm] x'(t)=\pmat{ 2e^{2t} & -e^t \\ 2e^{2t} & e^t } [/mm]

da gelten soll x'(t)=A*x(t) kann man ein Gleichungssystem für die Koeffizienten der Matrix A ableiten.

[mm] A=\pmat{ a & b \\ c & d } [/mm] daraus folgt,

[mm] ae^{2t}+be^{2t}=2e^{2t} [/mm]

[mm] -ae^t+be^t=-e^t [/mm]

[mm] ce^{2t}+de^{2t}=2e^{2t} [/mm]

[mm] -ce^t+de^t=e^t [/mm]


oder

a+b=2

b-a=-1

c+d=2

d-c=1

wenn man das Gleichungssystem gelöst hat, ist auch Aufgabe a fertig.

mfg ullim



Bezug
        
Bezug
Gesucht ist eine Matrix A: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 14.02.2007
Autor: ullim

Hi,

grundsätzlich ist die Lösung einer DGL der Form

x'(t)=A*x(t) immer

[mm] x(t)=e^{At}*\eta [/mm] und [mm] \eta [/mm] ist ein Anfangswert.

Da [mm] x(3)=\vektor{0 \\ 0} [/mm] gilt, folgt

[mm] x(3)=e^{A*3}*\eta=\vektor{0 \\ 0} [/mm]

daraus folgt [mm] \eta=\vektor{0 \\ 0} [/mm]

also [mm] x(t)=\vektor{0 \\ 0} [/mm]


Übrigens stimmt bei Aufgabe a) irgendwas nicht, einmal ist x als Matrix erklärt, danach als Anfangswert.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]