www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Ges.:Eigenwerte und -vektoren
Ges.:Eigenwerte und -vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ges.:Eigenwerte und -vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:01 Mo 08.06.2009
Autor: andreji

Aufgabe
[mm] A=\pmat{ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2} [/mm]

Berechnen Sie die Eigenwerte und -vektoren von A.
Tipp: A ist symmetrisch. Berechnen Sie das charakteristische Polynom nicht direkt, sondern berechnen Sie zunächst die Eigenvektoren zum Eigenwert Null.

Guten Tag,

ich komme bei der folgenden Aufgabe nicht voran, weil mir der Ansatz fehlt.
Ich habe zuerst den Eigenvektor zum Eigenwert 0 bestimmt:

[mm] \overrightarrow{v}=\vektor{r \\ s \\ t \\ -r-s-t} [/mm]

Nun weiß ich nicht, wie ich den berechneten Eigenvektor weiterverwende, um die weiteren Eigenwerte und Eigenvektoren zu bestimmen.

Wenn jemand weiß wie man hier fortfahren kann, dann helft mir bitte ein wenig.

Gruß
Andrej

        
Bezug
Ges.:Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Mo 08.06.2009
Autor: MathePower

Hallo andreji,

> [mm]A=\pmat{ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2}[/mm]
>  
> Berechnen Sie die Eigenwerte und -vektoren von A.
>  Tipp: A ist symmetrisch. Berechnen Sie das
> charakteristische Polynom nicht direkt, sondern berechnen
> Sie zunächst die Eigenvektoren zum Eigenwert Null.
>  
> Guten Tag,
>  
> ich komme bei der folgenden Aufgabe nicht voran, weil mir
> der Ansatz fehlt.
> Ich habe zuerst den Eigenvektor zum Eigenwert 0 bestimmt:
>  
> [mm]\overrightarrow{v}=\vektor{r \\ s \\ t \\ -r-s-t}[/mm]
>  
> Nun weiß ich nicht, wie ich den berechneten Eigenvektor
> weiterverwende, um die weiteren Eigenwerte und
> Eigenvektoren zu bestimmen.


Diesen Vektor v kannst Du wiederum aufspalten:

[mm]\pmat{r \\ s \\ t \\ -r-s-t}=r*\pmat{1 \\ 0 \\ 0 \\ -1}+s*\pmat{0 \\ 1 \\ 0 \\ -1}+t*\pmat{0 \\ 0 \\ 1 \\ 1}[/mm]

Das heißt jetzt, daß

[mm]\pmat{1 \\ 0 \\ 0 \\ -1}, \ \pmat{0 \\ 1 \\ 0 \\ -1}, \ \pmat{0 \\ 0 \\ 1 \\ -1}[/mm]

Eigenvektoren zum Eigenwert 0 sind.


>
> Wenn jemand weiß wie man hier fortfahren kann, dann helft
> mir bitte ein wenig.
>  
> Gruß
> Andrej


Gruß
MathePower

Bezug
                
Bezug
Ges.:Eigenwerte und -vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 08.06.2009
Autor: andreji

Hi Mathepower,

danke für deine Antwort. Du hast jetzt die Eigenvektoren zum Eigenwert 0 bestimmt. Wie können die bisherigen Ergebnisse nun weiterverwendet werden, um weitere Eigenwerte zu bestimmen?

Gruß
Andrej

Bezug
                        
Bezug
Ges.:Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:41 Di 09.06.2009
Autor: felixf

Hallo

> danke für deine Antwort. Du hast jetzt die Eigenvektoren
> zum Eigenwert 0 bestimmt. Wie können die bisherigen
> Ergebnisse nun weiterverwendet werden, um weitere
> Eigenwerte zu bestimmen?

Wieviele weitere Eigenwerte kann es noch geben?

Was ist mit [mm] $\vektor{ 1 \\ 1 \\ 1 \\ 1 }$? [/mm]

LG Felix


Bezug
                                
Bezug
Ges.:Eigenwerte und -vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:14 Di 09.06.2009
Autor: andreji

Ja, (1, 1, 1, 1) ist der Eigenvektor zum Eigenwert 8. Ich habe das mit einem Java Tool berechnen lassen. Aber wie kommt man selbst darauf?

Bezug
                                        
Bezug
Ges.:Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:03 Di 09.06.2009
Autor: angela.h.b.


> Ja, (1, 1, 1, 1) ist der Eigenvektor zum Eigenwert 8. Ich
> habe das mit einem Java Tool berechnen lassen. Aber wie
> kommt man selbst darauf?

Hallo,

zunächst einmal muß dieser EV von den vorhergehenden linear unabhängig sein, denn Du weißt, daß symmetrische Matrizen eine Basis aus Eigenvektoren haben.

Der zu findende vektor muß also die drei, die Du schon hast, zu einer Basis ergänzen.

Weiter weiß "man", daß Eigenvektoren zu verschiedenen Eigenwerten bei symmetrischen Matrizen senkrecht zueinander sind.
Folglich muß der ergänzende Vektor auf allen dreien, die Du schon hast, senkrecht stehen.

Gruß v. Angela



Bezug
                                                
Bezug
Ges.:Eigenwerte und -vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Di 09.06.2009
Autor: andreji

Habe das jetzt verstanden, ich danke euch für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]