www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Bauingenieurwesen" - Gerinnehydraulik Normalhöhe
Gerinnehydraulik Normalhöhe < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerinnehydraulik Normalhöhe: Auflösen nach h
Status: (Frage) beantwortet Status 
Datum: 10:34 Di 26.06.2018
Autor: Matze80

Aufgabe
Bestimmen Sie die Normalhöhe h im offenen Rechteckquerschnitt
Geg.: Stricklerbeiwert k, Breite b, Sohlgefälle I und Durchfluss Q
Ges.: h

Hallo,
Aus Q=v*A  und  v=k*(rhy^(2/3))*(I^(1/2))  und  A=h*b  mit  rhy=(h*b)/((2*h)+b)   folgt:

Q=k*(((h*b)/((2*h)+b))^(2/3))*(I^(1/2))*h*b

Wie kann ich das nach h= auflösen?

Mein TI-89 Titanium kann, wenn ich die Werte eingebe das Ergebnis berechnen. Nach h aufzulösen mit der solve() Funktion bringt jedoch nicht die gewünschte Lösung.
Sie lautet:
[mm] 1/(b^3)*(I^{3/2})*k^3 [/mm] = 0  ODER  
[mm] h*(h^9*b^7*I^3*k^6-2*Q^6)=b*Q^6 [/mm]

Da kann ich aber beim besten Willen nichts mit anfangen.

Von Hand habe ich den Term in ein Polynom 5. Grades umgerechnet:
[mm] h^5 [/mm] - [mm] (Q/(k*(I^{1/2})*b))^3*((2*h/b)+1)^{1/2} [/mm] = 0

Wie kann ich nun h berechnen? Ich denke einfach die Nullstellen des Polynoms berechnen oder approximieren. Ich weiss aber nicht mehr wie hier vorzugehen ist.

Ich bin dankbar für jeglichen Gedankenanstoß.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gerinnehydraulik Normalhöhe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Di 26.06.2018
Autor: Diophant

Hallo,

> Aus Q=v*A und v=k*(rhy^(2/3))*(I^(1/2)) und A=h*b mit
> rhy=(h*b)/((2*h)+b) folgt:

>

> Q=k*(((h*b)/((2*h)+b))^(2/3))*(I^(1/2))*h*b

>

> Wie kann ich das nach h= auflösen?

>

ist das so gemeint:

[mm]Q= \sqrt[3]{\left ( \frac{h*b}{2h+b} \right )^2}*\sqrt{I}*h*b[/mm]

Für den Fall würde es in der Tat auf eine algebraische Gleichung 5. Ordnung hinauslaufen, die man i.a. nicht exakt auflösen kann.

> Mein TI-89 Titanium kann, wenn ich die Werte eingebe das
> Ergebnis berechnen. Nach h aufzulösen mit der solve()
> Funktion bringt jedoch nicht die gewünschte Lösung.

Dazu muss man wissen, dass man algebraische Gleichungen ab der 5. Ordnung i.a. nicht auflösen kann, also kann es auch ein CAS nicht.

> Sie lautet:
> [mm]1/(b^3)*(I^{3/2})*k^3[/mm] = 0 ODER
> [mm]h*(h^9*b^7*I^3*k^6-2*Q^6)=b*Q^6[/mm]

>

Das ist so nicht nachvollziehbar.

> Von Hand habe ich den Term in ein Polynom 5. Grades
> umgerechnet:
> [mm]h^5[/mm] - [mm](Q/(k*(I^{1/2})*b))^3*((2*h/b)+1)^{1/2}[/mm] = 0

>

Das kann so nicht stimmen (außerdem ist das überhaupt kein Polynom auf der linken Seite, wegen der rationalen Potenz).

> Wie kann ich nun h berechnen? Ich denke einfach die
> Nullstellen des Polynoms berechnen oder approximieren. Ich
> weiss aber nicht mehr wie hier vorzugehen ist.

So wie du es gepostet hast, geht es nur näherungsweise.


Gruß, Diophant 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]