www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geradenschar/Ebene
Geradenschar/Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschar/Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 So 15.03.2009
Autor: Mandy_90

Aufgabe
Gegeben sind die Geradenschar [mm] g_{a}:\vec{x}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}, a\in\IR, [/mm] sowie die Ebene E:2x+y-3z=5.

a) Gehört die Gerade [mm] h:\vec{x}=\vektor{-3 \\ 5 \\ -1}+s*\vektor{-4 \\ 2 \\ 0} [/mm] zur Geradenschar [mm] g_{a}? [/mm]

b) Gibt es eine Ursprungsgerade in der Schar [mm] g_{a}? [/mm]
c) Untersuchen Sie die relative Lage der Schar [mm] g_{a} [/mm] zur Ebene E in Abhängigkeit vom Parameter a.

Hallo zusammen^^

Ich hab diese Aufgabe gerechnet,hab da aber einige Probleme.

Bei der a) weiß ich nicht genau wie ich vorgehen soll.Vielleicht den Stützpunkt von h in die Schar einsetzen?

b) Hier hab ich folgendes berechnet:

[mm] \vektor{0 \\ 0 \\ 0}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1} [/mm]

Das daraus entstehende Gleichungssystem ist aber unlösbar,d.h. es gibt keine Ursprungsgerade in der Schar.

c) Hier hab ich die Punkte der Geraden aufgeschrieben,also x=1+2ar, y=3+r, z=-1+ra+r und diese in die Ebenengleichung eingesetzt.Dan kam ich am Ene auf [mm] r=\bruch{-3}{(a-2)}. [/mm]
Das bedeutet doch,dass für [mm] a\not=2 [/mm] die Geraden der Schar die Ebene shcneiden.Und heißt das jetzt auch,dass für a=2 die Gerade parallel zur Ebene ist?

Vielen Dank

lg

        
Bezug
Geradenschar/Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 15.03.2009
Autor: M.Rex

Hallo

> Gegeben sind die Geradenschar [mm]g_{a}:\vec{x}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}, a\in\IR,[/mm]
> sowie die Ebene E:2x+y-3z=5.
>  
> a) Gehört die Gerade [mm]h:\vec{x}=\vektor{-3 \\ 5 \\ -1}+s*\vektor{-4 \\ 2 \\ 0}[/mm]
> zur Geradenschar [mm]g_{a}?[/mm]
>  
> b) Gibt es eine Ursprungsgerade in der Schar [mm]g_{a}?[/mm]
>  c) Untersuchen Sie die relative Lage der Schar [mm]g_{a}[/mm] zur
> Ebene E in Abhängigkeit vom Parameter a.
>  Hallo zusammen^^
>  
> Ich hab diese Aufgabe gerechnet,hab da aber einige
> Probleme.
>  
> Bei der a) weiß ich nicht genau wie ich vorgehen
> soll.Vielleicht den Stützpunkt von h in die Schar
> einsetzen?

Nicht ganz. Schaue mal, ob es ein a gibt, so dass
[mm] \vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1} [/mm]
Also ist das LGS
[mm] \gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)} [/mm]
[mm] \gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r} [/mm]
eindeutig lösbar?

>  
> b) Hier hab ich folgendes berechnet:
>  
> [mm]\vektor{0 \\ 0 \\ 0}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}[/mm]
>  
> Das daraus entstehende Gleichungssystem ist aber
> unlösbar,d.h. es gibt keine Ursprungsgerade in der Schar.

[daumenhoch]

>  
> c) Hier hab ich die Punkte der Geraden aufgeschrieben,also
> x=1+2ar, y=3+r, z=-1+ra+r und diese in die Ebenengleichung
> eingesetzt.Dan kam ich am Ene auf [mm]r=\bruch{-3}{(a-2)}.[/mm]
>  Das bedeutet doch,dass für [mm]a\not=2[/mm] die Geraden der Schar
> die Ebene shcneiden.Und heißt das jetzt auch,dass für a=2
> die Gerade parallel zur Ebene ist?

Das Ergebnis habe ich jetzt nicht nachgerechnet, der Weg ist aber korrekt.

>  
> Vielen Dank
>  
> lg

Marius

Bezug
                
Bezug
Geradenschar/Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 15.03.2009
Autor: Mandy_90

Vielen Dank.

> > Bei der a) weiß ich nicht genau wie ich vorgehen
> > soll.Vielleicht den Stützpunkt von h in die Schar
> > einsetzen?
>  
> Nicht ganz. Schaue mal, ob es ein a gibt, so dass
> [mm]\vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1}[/mm]
>  Also ist das LGS
> [mm]\gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)}[/mm]
>  [mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r}[/mm]
>  
> eindeutig lösbar?
>  

Nein,das System ist nicht eindeutig lösbar.Heißt das die Gerade h gehört nicht zur Schar?
Ich versteh aber nicht warum man jetzt h und [mm] g_{a} [/mm] gleichsetzt.Mit gleichsetzen berechnet man doch den Schnittpunkt und wir wollten doch wissen ob h zu [mm] g_{a} [/mm] gehört?Ich versteh grad den Zusammenhang nicht.

lg


Bezug
                        
Bezug
Geradenschar/Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 So 15.03.2009
Autor: MathePower

Hallo Mandy_90,

> Vielen Dank.
>  
> > > Bei der a) weiß ich nicht genau wie ich vorgehen
> > > soll.Vielleicht den Stützpunkt von h in die Schar
> > > einsetzen?
>  >  
> > Nicht ganz. Schaue mal, ob es ein a gibt, so dass
> >
> [mm]\vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1}[/mm]
>  >  Also ist das LGS
> > [mm]\gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)}[/mm]
>  >  [mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r}[/mm]


Hier muß es doch heißen:

[mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=\red{0}+r}[/mm]


>  
> >  

> > eindeutig lösbar?
>  >  
>
> Nein,das System ist nicht eindeutig lösbar.Heißt das die
> Gerade h gehört nicht zur Schar?

>  Ich versteh aber nicht warum man jetzt h und [mm]g_{a}[/mm]
> gleichsetzt.Mit gleichsetzen berechnet man doch den
> Schnittpunkt und wir wollten doch wissen ob h zu [mm]g_{a}[/mm]
> gehört?Ich versteh grad den Zusammenhang nicht.


Nun, wir nehmen an, daß h  zur Geradeschar [mm]g_{a}[/mm] gehört.

Dann müssen wir zeigen, daß

1. [mm]\pmat{-4 \\ 2 \\ 0}= \lambda * \pmat {2a \\ 1 \\ a+1}[/mm]

2. [mm]\pmat{-3 \\ 5 \\ -1}=\pmat{1\\3\\-1}+r*\pmat{2a \\ 1 \\ a+1}[/mm]

Zusammengefasst:

[mm]\pmat{-3 \\ 5 \\ -1}+s\pmat{-4 \\ 2 \\ 0}=\pmat{1\\3\\-1}+r*\pmat{2a \\ 1 \\ a+1}[/mm]


>  
> lg
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]