www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Geradengleichung aufstellen
Geradengleichung aufstellen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung aufstellen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:57 So 28.10.2012
Autor: Duckx

Ich soll die Gerade durch die Punkte (1,1,0) und (0,1,1) darstellen in der Form
[mm] $g=\{x \in R^3: a \times x=b\}$ [/mm]
mit den vektoren a und b [mm] $\in R^3$ [/mm]
Außerdem soll ich die geometrische bedeutung von a und b aufschreiben.

welches darstellung ist das? etwa die Hess´sche Normalform ?
Und welche geometrische bedeutung haben dann a und b? ich weiß nicht, was dort gehört werden will.

        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 So 28.10.2012
Autor: chrisno

Da es in dem Forum Hochschule steht, gehe ich davon aus, dass Du studierst. Darum schau bitte in Wikipedia unter Geradengleichung nach. Dort gibt es eigentlich auf alle Fragen eine Antwort. Dabei steht dort [mm] $\vec{b}$ [/mm] als Kreuzprodukt zweier Vektoren.

Bezug
                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 So 28.10.2012
Autor: Duckx

Aber es ist erst einmal die Hess´sche Normalform nicht wahr?

Bezug
                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 So 28.10.2012
Autor: abakus


> Aber es ist erst einmal die Hess´sche Normalform nicht
> wahr?

Der Vektor [mm]\vec{b}[/mm] entspricht [mm]\vec{a}\times \vec{x_0} [/mm].
Gruß Abakus


Bezug
                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 So 28.10.2012
Autor: Duckx

ja das steht ja in der Darstellungsform die uns gegeben wurde.
b ist also der nullvektor und a kollinear zu dem Stützvektor der Geraden?

Bezug
                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 28.10.2012
Autor: abakus


> ja das steht ja in der Darstellungsform die uns gegeben
> wurde.
>  b ist also der nullvektor und a kollinear zu dem
> Stützvektor der Geraden?

Nein,
b dürfte (in den meisten Fällen) nicht der Nullvektor sein.


Bezug
                                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 So 28.10.2012
Autor: Duckx

Dann ist es also nicht die Hess´sche normalform? ich bitte um einen tipp :)

Bezug
                                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 28.10.2012
Autor: chrisno


> Dann ist es also nicht die Hess´sche normalform?

So ist es.

> ich bitte um einen tipp :)

Einen Namen braucht Du dem nicht zu geben. Die Bedeutung kannst Du in Wikipedia nachlesen, s.o..


Bezug
                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 So 28.10.2012
Autor: chrisno

Das ist doch im [mm] $\IR^3$. [/mm]

Bezug
                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 So 28.10.2012
Autor: Duckx

wie nennt man diese Form denn, die bei wikipedia unter Gerade im Raum steht?

[mm] $\vec{u} \times (\vec{r}-\vec{r_0})=\vec{0} [/mm]




Bezug
                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 So 28.10.2012
Autor: chrisno

Ich weiß es nicht.
Noch einmal: Zur Beantwortung der Aufgabe brauchst Du diese Information nicht.

Bezug
                                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 So 28.10.2012
Autor: Duckx

Ok wäre dann die Lösung:

[mm] $\vektor{-1 \\ 0 \\ 1} \times [\vec{x}-\vektor{1 \\ 1 \\ 0}]=\vec{0}$ [/mm]

Ist das korrekt?

PS: wie krieg ich die eckige klammer "groß"?

Bezug
                                                        
Bezug
Geradengleichung aufstellen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:22 Mo 29.10.2012
Autor: Duckx

ist dies so korrekt?

Bezug
                                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 29.10.2012
Autor: chrisno


> Ok wäre dann die Lösung:
>  
> [mm]\vektor{-1 \\ 0 \\ 1} \times \left[ \vec{x}-\vektor{1 \\ 1 \\ 0} \right]=\vec{0}[/mm]
>  
> Ist das korrekt?

Ja und nein. Die Darstellung ist richtig, aber nicht die in der Aufgabe geforderte. Dann fehlt noch die geometrische Bedeutung von a und b.

>  
> PS: wie krieg ich die eckige klammer "groß"?
>  

Ich hab das mal gemacht, schau mal in den Quellcode.

Bezug
                                                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:28 Mo 29.10.2012
Autor: Duckx

Ok dann weiß ich wirklich nicht weiter :( was soll ich denn dann machen? brauche tipps

Bezug
                                                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 29.10.2012
Autor: Diophant

Hallo,

> Ok dann weiß ich wirklich nicht weiter :( was soll ich
> denn dann machen? brauche tipps

nutze die Bilinearität des Kreuzprodukts.

Gruß, Diophant



Bezug
                                                                                
Bezug
Geradengleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:07 Mo 29.10.2012
Autor: Duckx

Du meinst ich soll die Klammer auflösen?

Dann wäre das Ergebnis:

[mm] $\vektor{-1 \\ 0 \\ 1} \times \vec{x}= \vektor{-1 \\ 1 \\ -1}$ [/mm]

Es ist die Frage noch, welche geometrische Bedeutung a und b haben.

a ist der Richtungsvektor der Geraden.
und b ist ein vektor, der Senkrecht zu der Geraden steht?

Bezug
                                                                                        
Bezug
Geradengleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 29.10.2012
Autor: Diophant

Hallo,

> Du meinst ich soll die Klammer auflösen?

Genau. ;-)

>
> Dann wäre das Ergebnis:
>
> [mm]\vektor{-1 \\ 0 \\ 1} \times \vec{x}= \vektor{-1 \\ 1 \\ -1}[/mm]
>
> Es ist die Frage noch, welche geometrische Bedeutung a und
> b haben.
>
> a ist der Richtungsvektor der Geraden.
> und b ist ein vektor, der Senkrecht zu der Geraden steht?

Ja, so ist es. Und besonders leicht kann man das einsehen, wenn man die auf Wikipedia angegeben Form hernimmt und bedenkt, dass das Kreuzprodukt zweier linear abhängiger und damit kollinearer Vektoren stets der Nullvektor ist!


Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]