www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden
Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: parallel oder identisch?
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 24.02.2007
Autor: jane882

Aufgabe
...

Wenn ich 2 Geraden habe, linear abhängig, und will wissen ob sie parallel oder identisch sind, was mache ich dann?

Parallel wären sie ja wenn die Richtungvektoren gleich oder ein Vielfaches voneinander bilden würden.

Wenn sie das nicht wären, wär die Geraden dann automatisch identisch? Oder kann man das auch noch irgendwie berechnen? Mit Punktprobe oder so?

Danke:)

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 24.02.2007
Autor: Trampeltier

Hallo,
du kannst di Identität sehr leicht nachprüfen. Du musst in beide Gleichungen nur den selben X-Wert einsetzen, wenn du nun den gleichen Y-Wert herausbekommst, dann wiederholst du das ganze noch einmal, machst es also mit 2 Punkten, denn eine Gerade ist ja durch 2 Punkte eindeutig bestimmt.
So würde ich die Kontrolle machen ;)
Gruß Trampel

Bezug
                
Bezug
Geraden: einsetzen
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 24.02.2007
Autor: jane882

Aufgabe
...

wenn ich jetzt die gerade hätte:

(1 2 3) + Lamnda (-1 3 1)
und

( 2 4 0)+ Mü (2 -6 -2)

Dann muss ich für Lamnda und Mü z.b. einmal 2 einsetzen und einmal 3 ?

x= 2
Punkt A( -1/8/5)
Punkt B( 6/8/-4)

x= 3
Punkt A(-2/11/6)
Punkt B( 8 /-14/-6)

so??? und nun?

Bezug
                        
Bezug
Geraden: Stützvektor verwenden
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 24.02.2007
Autor: Loddar

Hallo Jane!


Wenn Du diese beiden Geraden gegeben und bereits festgestellt hast, dass die Richtungsvektoren linear abhängig sind, setzt Du einfach den Stützvektor der einen Gerade in die Geradengleichung der anderen Geraden ein:

[mm] $g_1 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

[mm] $g_2 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \red{\vektor{2\\4\\0}}+ \mu*\vektor{2\\-6\\-2}$ [/mm]



[mm] $\Rightarrow$ $\red{\vektor{2\\4\\0}} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

Löse hier nun die 3 Gleichungen nach [mm] $\lambda [/mm] \ = \ ...$ um. Solltest Du 3-mal dasselbe Ergebnis erhalten, liegt der Punkt [mm] $A_2 [/mm] \ [mm] \left(2;4;0\right)$ [/mm] auch auf der Geraden [mm] $g_1$ [/mm] und beide Geraden [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] sind identisch.

Bei unterschiedlichen [mm] $\lambda$-Werten [/mm] sind die beiden Geraden nicht identisch; sondern "nur" parallel.


Gruß
Loddar


Bezug
                                
Bezug
Geraden: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 24.02.2007
Autor: jane882

danke:) das habe ich verstanden! kannst du mir vielleicht auch bei meiner anderen aufgaben (post: schnittpunkt) kurz helfen:(



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]