www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Geraden
Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Do 19.10.2006
Autor: Binu

Aufgabe
Zwei Geraden g1=m1x+b und g2=m2x+c heißen parallel genau dann, wenn g1=g2 gilt oder wenn keine reelle Zahl x existiert, für die die Gleichung m1x+b=m2x+c erfüllt ist. Es seien die Geraden g1 und g2 gegeben. Beweisen Sie: g1 [mm] \parallel [/mm] g2 [mm] \gdw [/mm] m1=m2.

Kann mir bitte jemad den Ansatz verraten? Vielen lieben Dank!

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 19.10.2006
Autor: riwe

hallo binu:
setze doch einfach die beiden geraden gleich, und untersuche unter welchen bedingungen ein schnittpunkt existiert.


Bezug
        
Bezug
Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 19.10.2006
Autor: Binu

Ein Schnittpunkt exisitiert nur, wenn m1 [mm] \not= [/mm] m2, aber wie kann ich das beweisen?

Bezug
                
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 19.10.2006
Autor: riwe

siehe OBEN!
[mm] m_1x+n_1=m_2x+n_2 \to x(m_1-m_2)=n_2-n_1 [/mm]
und wann ergibt das einen widerspruch, bzw. wann existiert eine lösung?



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]