www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Gerade an Ebene spiegeln
Gerade an Ebene spiegeln < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade an Ebene spiegeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 So 22.01.2006
Autor: Phoney

Aufgabe
F:  [mm] \vektor{1 \\ -4 \\ 8}*[\vec{x}-\vektor{1 \\ 2 \\ -8}]=0 [/mm]

[mm] g:\vec{x}\vektor{2 \\ 0 \\ 1}+r\vektor{-2 \\ -1 \\ 2} [/mm]

Durch eine Spiegelung an der Ebene F wird die Gerade g auf g' abgebildet. Bestimmen sie eine Gleichung von g'.

Hallo.
Das allgemeine vorgehen:

I) Ich bestimme den Schnittpunkt der Ebene und der Geraden. Punkt 1 für g'.

II) Ich baue eine Hilfsgerade (Ortsvektor der Geraden + s Normalenvektor). Dann berechne ich den Schnittpunkt mit der Ebene. Nennen wir ihn F.

III) Ich bilde mit dem Ortsvektor der Geraden und dem Lotfußpunkt F einen Vektor.

IV) Diesen ziehe ich zweimal vom Ortsvektor ab. Punkt 2 für g'.


I)Ich bestimme den Schnittpunkt der Ebene und der Geraden. Punkt 1 für g'.

F:  [mm] \vektor{1 \\ -4 \\ 8}*[\vec{x}-\vektor{1 \\ 2 \\ -8}]=0 [/mm]

Von der Normalenform in die Koordinatenform

F: [mm] x_1 [/mm] - [mm] 4x_2 +8x_3 [/mm] = -71

[mm] g:\vec{x} [/mm] in die Koordinatenform

(2-2r)-4(-r)+8(1+2r) = -71

2-2r+4r+16r+8 = -71

10 +18r = -71

r = - [mm] \bruch{9}{2} [/mm]

In [mm] g:\vec{x} [/mm] = [mm] \vektor{2 \\ 0 \\ 1}- \bruch{9}{2}\vektor{-2 \\ -1 \\ 2} [/mm] = [mm] \vektor{11 \\ 4,5 \\ -8} [/mm]

S(11|4,5|-8)

II) Ich baue eine Hilfsgerade (Ortsvektor der Geraden + s Normalenvektor). Dann berechne ich den Schnittpunkt mit der Ebene. Nennen wir ihn F.

[mm] h:\vec{x} [/mm] = [mm] \vektor{2 \\ 0 \\ 1}+s\vektor{1 \\ -4 \\ 8} [/mm]

Bevor ich so schön weiterrechne, ist das soweit richtig???? ICh habe mich schon 100 mal bei der Aufgabe verrechnet.

Grüße Phoney

        
Bezug
Gerade an Ebene spiegeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 22.01.2006
Autor: Zwerglein

Hi, phoney,

> F:  [mm]\vektor{1 \\ -4 \\ 8}*[\vec{x}-\vektor{1 \\ 2 \\ -8}]=0[/mm]
>  
> [mm]g:\vec{x}\vektor{2 \\ 0 \\ 1}+r\vektor{-2 \\ -1 \\ 2}[/mm]
>  
> Durch eine Spiegelung an der Ebene F wird die Gerade g auf
> g' abgebildet. Bestimmen sie eine Gleichung von g'.
>  Hallo.
>  Das allgemeine vorgehen:
>  
> I) Ich bestimme den Schnittpunkt der Ebene und der Geraden.
> Punkt 1 für g'.
>  
> II) Ich baue eine Hilfsgerade (Ortsvektor der Geraden + s
> Normalenvektor). Dann berechne ich den Schnittpunkt mit der
> Ebene. Nennen wir ihn F.
>
> III) Ich bilde mit dem Ortsvektor der Geraden und dem
> Lotfußpunkt F einen Vektor.
>  
> IV) Diesen ziehe ich zweimal vom Ortsvektor ab. Punkt 2 für
> g'.

Alles OK!

> I)Ich bestimme den Schnittpunkt der Ebene und der Geraden.
> Punkt 1 für g'.
>  
> F:  [mm]\vektor{1 \\ -4 \\ 8}*[\vec{x}-\vektor{1 \\ 2 \\ -8}]=0[/mm]
>  
> Von der Normalenform in die Koordinatenform
>  
> F: [mm]x_1[/mm] - [mm]4x_2 +8x_3[/mm] = -71

Stimmt!

> [mm]g:\vec{x}[/mm] in die Koordinatenform
>  
> (2-2r)-4(-r)+8(1+2r) = -71
>  
> 2-2r+4r+16r+8 = -71
>  
> 10 +18r = -71
>
> r = - [mm]\bruch{9}{2}[/mm]
>  
> In [mm]g:\vec{x}[/mm] = [mm]\vektor{2 \\ 0 \\ 1}- \bruch{9}{2}\vektor{-2 \\ -1 \\ 2}[/mm]
> = [mm]\vektor{11 \\ 4,5 \\ -8}[/mm]
>  
> S(11|4,5|-8)

Richtig!

> II) Ich baue eine Hilfsgerade (Ortsvektor der Geraden + s
> Normalenvektor). Dann berechne ich den Schnittpunkt mit der
> Ebene. Nennen wir ihn F.
>
> [mm]h:\vec{x}[/mm] = [mm]\vektor{2 \\ 0 \\ 1}+s\vektor{1 \\ -4 \\ 8}[/mm]
>  
> Bevor ich so schön weiterrechne, ist das soweit richtig????
> ICh habe mich schon 100 mal bei der Aufgabe verrechnet.

Ja! Bis dahin stimmt's!

mfG!
Zwerglein

Bezug
                
Bezug
Gerade an Ebene spiegeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 So 22.01.2006
Autor: Phoney

Hallo Zwerglein.

Vielen Dank für das Nachgucken. Aber ich glaube, dass weitere Rechnen spare ich mir.
Auch dankeschön für das Prüfen der allgemeinen Ansätze, bei denen ich seeeeehr unsicher war.

Grüße,
Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]