www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Geometrische Ungleichungen
Geometrische Ungleichungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Ungleichungen: Problem 2
Status: (Frage) beantwortet Status 
Datum: 20:32 Fr 25.12.2009
Autor: Joones

Aufgabe
Die Längen aufeinanderfolgender Seiten eines Vierecks seinen a, b, c, d. F bezeichne die Fläche des Vierecks.

Zeigen Sie, dass

F [mm] \le \bruch{1}{4} \* [/mm] (a + b) [mm] \* [/mm] (c + d)

Nun hab eich verschiedene Vierecken ausprobiert mit Zahlenwerten und bin drauf gekommen, dass beim Quadrat zum Beispiel die Gleichugn genau gleich ist.

Wie genau ich nun aber dieses "zeigen" verstehen soll, weiß ich leider nicht... ist damit beweisen gemeint? könnte mir da jemand einen Ansatz geben oder gar eine Lösung, falls es zu trivial ist? ;)

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt bisher.

        
Bezug
Geometrische Ungleichungen: Idee mit Parkettierung
Status: (Antwort) fertig Status 
Datum: 23:02 Fr 25.12.2009
Autor: Al-Chwarizmi


> Die Längen aufeinanderfolgender Seiten eines Vierecks
> seien a, b, c, d.
> F bezeichne die Fläche des Vierecks.
> Zeigen Sie, dass
>  
> F [mm]\le \bruch{1}{4} \*[/mm] (a + b) [mm]\*[/mm] (c + d)
>  Nun habe ich verschiedene Vierecken ausprobiert mit
> Zahlenwerten und bin drauf gekommen, dass beim Quadrat zum
> Beispiel die Gleichung genau erfüllt ist.
>
> Wie genau ich nun aber dieses "zeigen" verstehen soll,
> weiß ich leider nicht... ist damit beweisen gemeint?
> könnte mir da jemand einen Ansatz geben oder gar eine
> Lösung, falls es zu trivial ist? ;)
>  
> Vielen Dank!


Hallo Joones,

mit "zeigen" ist "beweisen" gemeint. Falls die
Gleichung beim Quadrat exakt erfüllt ist, wäre
dies vielleicht ein Hinweis, die Vierecksfläche
mit der eines geeigneten Quadrats zu verglei-
chen ...
Ich habe eine etwas andere Idee: Mit einem belie-
bigen ebenen (nicht überschlagenen) Viereck kann
man die Ebene parkettieren. Schau mal []hier nach
und probier das auch mal mit selber ausgeschnit-
tenen Pappeschnipseln aus.
Wenn du nun vier Vierecke betrachtest, die in
einer solchen Parkettierung an einer Ecke
zusammen stoßen, dann bilden diese ein 8-Eck,
zu welchem man ein flächengleiches Parallelo-
gramm finden kann. Durch Betrachtung der Seiten-
längen a,b,c,d des ursprunglichen Vierecks und
jener dieses Parallelogramms sollte man zur
gewünschten Abschätzung kommen.

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]