www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Geometrie
Geometrie < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Fr 17.03.2006
Autor: NOI2006

Aufgabe
  [Dateianhang nicht öffentlich]

Hallo!
Wieder komme ich leider bei einer Aufgabe nicht weiter. Wie man sieht habe ich auch schon etwas rumgekritzelt. Aber es fehlt mir leider der entscheidende Durchbruch.Vielleicht kann mir jemand von euch helfen.
Vielen Dank schonmal im voraus!

NOI

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Fr 17.03.2006
Autor: Fugre


>  [a][Bild Nr. 1 (fehlt/gelöscht)]
>  Hallo!
>  Wieder komme ich leider bei einer Aufgabe nicht weiter.
> Wie man sieht habe ich auch schon etwas rumgekritzelt. Aber
> es fehlt mir leider der entscheidende Durchbruch.Vielleicht
> kann mir jemand von euch helfen.
>  Vielen Dank schonmal im voraus!
>  
> NOI
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo NOI,

wenn du ganz genau hinsiehst, wirst du merken, (1) dass für den
Abstand des Mittelpunktes [mm] $M_g$ [/mm] des großen Halbkreises zum Mittelpunkt [mm] $M_k$ [/mm]
der kleinen Kreise der Satz des Pythagoras gilt. (2) Der Abstand
des Mittelpunkts [mm] $M_k$ [/mm] zum großen Kreis entspricht $r$ und
somit ist der Radius des großen Kreises $R$
gleich der Summe aus der Strecke [mm] $\overline{M_gM_k}$ [/mm] und $r$.
(3) Der Radius $R$ des großen Kreises ist gleich der Hälfte seines Durchmessers $x$.

In Formeln also:
(1)$ [mm] \overline{M_gM_k}^2=r^2 [/mm] + [mm] r^2$ [/mm]
[mm] (2)$\overline{M_gM_k}+r=R$ [/mm]
[mm] (3)$R=\frac{1}{2}x$ [/mm]

Der Rest sollte so funktionieren.

Gruß
Nicolas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]