www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Gemeinsame Verteilung
Gemeinsame Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gemeinsame Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 05.07.2009
Autor: Charlie01

Aufgabe
Die gemeinsame Verteilung zweier Zufallsvariablen X und Y wird durch die (gemeinsame) Dichte f(x,y) beschrieben:

a) f(x,y) = [mm] \bruch{1}{4} [/mm] * [mm] 1_{(-1,1)^2}(x,y) [/mm]
b) f(x,y) = [mm] \bruch{1}{2} [/mm] * [mm] 1_{(-1,0)^2}(x,y) [/mm] + [mm] 1_{[0,1)^2}(x,y)) [/mm]
c) ...

wie sind in diesen Fällen X und Y selbst verteilt? In welchem Fall (und warum) sind X und Y stoch. unabhängig? Worin unterscheiden sich die gemeinsamen Verteilungen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Die in der Aufgabe angegebenen Verteilungen sind ja nicht all zu kompliziert, dennoch habe ich Probleme die Aufgabenstellung zu verstehen.

Zunächst habe ich die Randdichten [mm] f_X(x) [/mm] und [mm] f_Y(y) [/mm] berechnet, für Teilaufgabe a) beispielsweise so:

[mm] f(x,y)=\begin{cases} \bruch{1}{4}, & \mbox{für } -1 < x,y < 1 \\ 0, & \mbox{sonst} \end{cases} [/mm]

[mm] f_X(x) [/mm] = [mm] \integral_{-\infty}^{\infty}{\bruch{1}{4}*1_{(-1,1)}(x,y)dy} [/mm] = [mm] \bruch{1}{4} [/mm] * [mm] \integral_{-1}^{1}{dy} [/mm] = [mm] \bruch{1}{2} [/mm]

das selbe für [mm] f_Y(y) [/mm] = [mm] \bruch{1}{2} [/mm] (Oder hab ich da schon einen dummen Fehler gemacht?)

Da [mm] f_X(x) [/mm] * [mm] f_Y(y) [/mm] = f(x,y) ist, sind X und Y in dem Aufgabenteil unabhängig. in den anderen trifft das nicht zu.

Mich stört aber die Formulierung: "Wie sind in diesen Fällen X und Y selbst verteilt?" Was wollen die da von mir Wissen? Ich steh leider etwas auf dem Schlauch. Genauso bei den Unterschieden.

Kann mir jemand weiterhelfen?

Danke

        
Bezug
Gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 05.07.2009
Autor: luis52


> Die in der Aufgabe angegebenen Verteilungen sind ja nicht
> all zu kompliziert, dennoch habe ich Probleme die
> Aufgabenstellung zu verstehen.
>
> Zunächst habe ich die Randdichten [mm]f_X(x)[/mm] und [mm]f_Y(y)[/mm]
> berechnet, für Teilaufgabe a) beispielsweise so:
>  
> [mm]f(x,y)=\begin{cases} \bruch{1}{4}, & \mbox{für } -1 < x,y < 1 \\ 0, & \mbox{sonst} \end{cases}[/mm]
>  
> [mm]f_X(x)[/mm] =
> [mm]\integral_{-\infty}^{\infty}{\bruch{1}{4}*1_{(-1,1)}(x,y)dy}[/mm]
> = [mm]\bruch{1}{4}[/mm] * [mm]\integral_{-1}^{1}{dy}[/mm] = [mm]\bruch{1}{2}[/mm]
>  
> das selbe für [mm]f_Y(y)[/mm] = [mm]\bruch{1}{2}[/mm] (Oder hab ich da schon
> einen dummen Fehler gemacht?)
>  
> Da [mm]f_X(x)[/mm] * [mm]f_Y(y)[/mm] = f(x,y) ist, sind X und Y in dem
> Aufgabenteil unabhängig. in den anderen trifft das nicht
> zu.

Gut.

>  
> Mich stört aber die Formulierung: "Wie sind in diesen
> Fällen X und Y selbst verteilt?" Was wollen die da von mir
> Wissen? Ich steh leider etwas auf dem Schlauch. Genauso bei
> den Unterschieden.

Hast du geloest, indem du die Randdichten bestimmt hast.

vg Luis

Bezug
                
Bezug
Gemeinsame Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 So 05.07.2009
Autor: Charlie01

ah ok.. hatte ich schon irgendwie vermutet. Vielen Dank!

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]