www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Geleichungssystem,Differential
Geleichungssystem,Differential < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geleichungssystem,Differential: Differential herleiten
Status: (Frage) beantwortet Status 
Datum: 22:10 Sa 24.06.2006
Autor: Gustav_19

Aufgabe
Man zeige, dass das Gleichungsystem
[mm] x^{2}+uy+e^{v}=0 [/mm]
[mm] 2x+u^{2}-uv-5=0 [/mm]
in einer Umgebung des Punktes (2,5) durch eine [mm] C^{1}-Abbildung (x,y)\mapsto(u(x,y),v(x,y)) [/mm]
mit u(2,5)=-1 undv(2,5)=0 aufgelöstwerden kann, und berechne das Differential in diesem
Punkt.

Den ersten Aufgabenteil habe ich schon bewältigt.
Wie kann man das Differential im Punkt (2,5) berechnen?
Ich habeschon mal nachgeforscht:
Folgende Formeln habe ich gefunden:
[mm] dg(a)=-(d_{y}f(a,b))^{-1}\circ(d_{x}f^{-1}f(a,b)) [/mm]
[mm] g'(x,y)=-(d_{u,v}f(x,y,u,v))^{-1}\circ(d_{x,y}f(x,y,u,v)) [/mm]

Welche von beiden Formeln ist die Richtige?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geleichungssystem,Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 So 25.06.2006
Autor: Hanno

Hallo.

Die zweite Formel ist die richtige.

Du erhältst sie, indem du die konstante [mm] $C^1$-Funktion $h:U\to \IR^2$, [/mm] $h(x,y)=f(x,y,u(x,y),v(x,y))$ gemäß der Kettenregel ableitest; $U$ bezeichne die in der Aufgabenstellung genannte Umgebung von $(2,5)$.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]