www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Gekoppelte Experimente
Gekoppelte Experimente < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gekoppelte Experimente: Zweistufiges Experiment
Status: (Frage) beantwortet Status 
Datum: 11:37 Mi 30.09.2009
Autor: oeli1985

Aufgabe
Df: seien [mm] \Delta_{1}, \Delta_{2} [/mm] endliche Ergebnismengen mit Wahrscheinlichkeiten [mm] p_{1} [/mm] und [mm] p_{2} [/mm]

Das zweistufige Experiment ist gegeben durch die Wahrscheinlichkeiten [mm] p(w_{1}, w_{2})=p_{1}(w_{1})p_{2}(w_{1};w_{2}) [/mm]

Für das zugehörige Wahrscheinlichkeitsmaß P gilt also:

[mm] P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2})=\summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2}) [/mm]

Hallo zusammen,
ich habe ein Verständnisproblem bzgl obiger Definition.

Mein Problem liegt an der markierten Stelle:

[mm] P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2}) [/mm] = [mm] \summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2}) [/mm]

Also klar wäre mir:

[mm] P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2}) [/mm] = [mm] \summe_{w_{1} \in A_{1}, w_{2} \in A_{2}}^{}p_{1}(w_{1})p_{2}((w_{1};w_{2}) [/mm]

Mir ist klar, dass beim Ausmultiplizieren der ersten Variante einige Produkte wegfallen würden, weil diese Ereignisfolgen unmöglich sind, die entsprechenden Wahrscheinlichkeiten also gleich 0 wären und so das Gleiche wie in Variante 2 herauskommen würde. Aber, wenn ich nicht ausmultiplizieren würde sähe das ganze doch wie folgt aus und warum dann das selbe herauskommen soll versteh ich nicht.

Denn bei einem Experiment mit zwei möglichen, gleichwahrscheinlichen Ergebnissen würde zwar das selbe rauskommen, aber wenn man von folgendem ausgeht, drücken die beiden Ausdrücke doch nicht das Selbe aus, oder?

Der Baum ist vereinfacht dargestellt, d.h. ich zeige nur die benötigten Äste auf. Die kursiv gedruckten Angaben beschreiben die entsprechenden Wahrscheinlichkeiten.
                            
          1 1/4 0 (weil wir ja -1 brauchen)
   1/4
0 1/2     0 1/2 0 (weil wir ja 0 brauchen)
   1/4
         -1 1/4 0 (weil wir ja 1 brauchen)

nach Df würde gelten:

[mm] \summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})=(p_{1}(0)+p_{1}(1)+p_{1}(-1))(p_{2}(0;0)+p_{2}(1;0)+p_{2}(-1;0))=1 [/mm]

nach Variante 2 würde aber gelten:

[mm] p_{1}(0)p_{2}((0;0)+p_{1}(1)p_{2}((1;0)+p_{1}(-1)p_{2}(-1;0)=1/4+1/16+1/16=3/8 [/mm]

Ihr seht irgendwas stimmt in meinen Gedanken nicht. Wär nett, wenn mir jemand dabei helfen könnte sie neu zu ordnen.

Danke schon mal und viele Grüße

Patrick



        
Bezug
Gekoppelte Experimente: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Do 01.10.2009
Autor: rainerS

Hallo Patrick!

> Df: seien [mm]\Delta_{1}, \Delta_{2}[/mm] endliche Ergebnismengen
> mit Wahrscheinlichkeiten [mm]p_{1}[/mm] und [mm]p_{2}[/mm]
>  
> Das zweistufige Experiment ist gegeben durch die
> Wahrscheinlichkeiten [mm]p(w_{1}, w_{2})=p_{1}(w_{1})p_{2}(w_{1};w_{2})[/mm]
>  
> Für das zugehörige Wahrscheinlichkeitsmaß P gilt also:
>  
> [mm]P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2})=\summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})[/mm]
>  
> Hallo zusammen,
>  ich habe ein Verständnisproblem bzgl obiger Definition.
>  
> Mein Problem liegt an der markierten Stelle:
>  
> [mm]P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2}) \red{=}\summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})[/mm]
>  
> Also klar wäre mir:
>
> [mm]P(A_{1}xA_{2})=\summe_{(w_{1},w_{2}) \in A_{1}xA_{2}}^{}p(w_{1},w_{2})\red{=}\summe_{w_{1} \in A_{1}, w_{2} \in A_{2}}^{}p_{1}(w_{1})p_{2}((w_{1};w_{2})[/mm]
>  
> Mir ist klar, dass beim Ausmultiplizieren der ersten
> Variante einige Produkte wegfallen würden, weil diese
> Ereignisfolgen unmöglich sind, die entsprechenden
> Wahrscheinlichkeiten also gleich 0 wären und so das
> Gleiche wie in Variante 2 herauskommen würde. Aber, wenn
> ich nicht ausmultiplizieren würde sähe das ganze doch wie
> folgt aus und warum dann das selbe herauskommen soll
> versteh ich nicht.
>  
> Denn bei einem Experiment mit zwei möglichen,
> gleichwahrscheinlichen Ergebnissen würde zwar das selbe
> rauskommen, aber wenn man von folgendem ausgeht, drücken
> die beiden Ausdrücke doch nicht das Selbe aus, oder?
>  
> Der Baum ist vereinfacht dargestellt, d.h. ich zeige nur
> die benötigten Äste auf. Die kursiv gedruckten Angaben
> beschreiben die entsprechenden Wahrscheinlichkeiten.
>                              
> 1 1/4 0 (weil wir ja -1 brauchen)
>     1/4
> 0 1/2    0 1/2 0 (weil wir ja 0 brauchen)
>     1/4
> -1 1/4 0 (weil wir ja 1 brauchen)
>  
> nach Df würde gelten:
>  
> [mm]\summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1}) \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})=(p_{1}(0)+p_{1}(1)+p_{1}(-1))(p_{2}(0;0)+p_{2}(1;0)+p_{2}(-1;0))=1[/mm]
>  
> nach Variante 2 würde aber gelten:
>  
> [mm]p_{1}(0)p_{2}((0;0)+p_{1}(1)p_{2}((1;0)+p_{1}(-1)p_{2}(-1;0)=1/4+1/16+1/16=3/8[/mm]

Du liest die Formel falsch: die rechte Seite ist nicht

[mm] \left(\summe_{w_{1} \in A_{1}}^{}p_{1}(w_{1})\right)\left( \summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})\right) [/mm]

sondern

[mm] \summe_{w_{1} \in A_{1}}^{}\left(p_{1}(w_{1})\summe_{w_{2} \in A_{2}}^{}p_{2}(w_{1};w_{2})\right) [/mm]

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]