www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Gegenseitige Lage von Ebenen
Gegenseitige Lage von Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gegenseitige Lage von Ebenen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:49 So 03.07.2005
Autor: Olaf

Hallo Leute,

ich habe ein kleines Problem. Und zwar gehts um 2 Ebenen, die sich schneiden. Ich habe die Aufgabe auch gelöst, usw. nur gehts jetzt eben darum die Schnittgerade zu bestimmen und genau das ist mein Problem: Ich muss ja das Ergebnis in eine der beiden Parametergleichungen der Ebenen einsetzen. Aber wie genau mache ich das? Ich habe für k=-4-33/2 m raus und muss das jetzt in folgende Paramtergleichung einsetzen: [mm] E_2: \overrightarrow{x}= \vektor{-1 \\ 5 \\ 2} [/mm] + k * [mm] \vektor{1 \\ 1 \\ 2} [/mm] + m * [mm] \vektor{-2 \\ 1 \\ 3} [/mm]
Das Ergebnis, also die Schnittgerade, soll g: [mm] \overrightarrow{x}= \vektor{-5 \\ 1 \\ -6} [/mm] + m * [mm] \vektor{37 \\ 31 \\ 60} [/mm] sein.
Für eure Hilfe bedanke ich mich bereits im Voraus.

Gruß
Olaf.  

        
Bezug
Gegenseitige Lage von Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 So 03.07.2005
Autor: Sigrid

Hallo Olaf,

>
> ich habe ein kleines Problem. Und zwar gehts um 2 Ebenen,
> die sich schneiden. Ich habe die Aufgabe auch gelöst, usw.
> nur gehts jetzt eben darum die Schnittgerade zu bestimmen
> und genau das ist mein Problem: Ich muss ja das Ergebnis in
> eine der beiden Parametergleichungen der Ebenen einsetzen.
> Aber wie genau mache ich das? Ich habe für k=-4-33/2 m raus
> und muss das jetzt in folgende Paramtergleichung einsetzen:
> [mm]E_2: \overrightarrow{x}= \vektor{-1 \\ 5 \\ 2} + k * > \vektor{1 \\ 1 \\ 2} + m * \vektor{-2 \\ 1 \\ 3}[/mm]
>  Das
> Ergebnis, also die Schnittgerade, soll g:
> [mm]\overrightarrow{x}= \vektor{-5 \\ 1 \\ -6} + m * \vektor{37 \\ 31 \\ 60}[/mm]
> sein.

Hast du den Wert für k schon mal in die Gleichung für [mm] E_2 [/mm] eingesetzt?
Du bekommst dann

[mm] E_2: \overrightarrow{x}= \vektor{-1 \\ 5 \\ 2} + (-4-\bruch{33}{2} m) \cdot \vektor{1 \\ 1 \\ 2} + m \cdot \vektor{-2 \\ 1 \\ 3}[/mm]

[mm] = \vektor{-1 \\ 5 \\ 2} -4\cdot \vektor{1 \\ 1 \\ 2} + (-\bruch{33}{2}) m \cdot \vektor{1 \\ 1 \\ 2} + m \cdot \vektor{-2 \\ 1 \\ 3}[/mm]



[mm] = \vektor{-5 \\ 1 \\ -6} + m \cdot \vektor{- \bruch{37}{2} \\ - \bruch{31}{2} \\ - 30} [/mm]

Wenn du den Richtungsvektor mit -2 multiplizierst, erhälst du das angegebene Ergebnis. Die beiden Gleichungen gehören also zur selben Geraden.

Gruß
Sigrid


>  Für eure Hilfe bedanke ich mich bereits im Voraus.
>
> Gruß
>  Olaf.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]