www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Gedämpfte Schwingung
Gedämpfte Schwingung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mi 06.10.2010
Autor: Kuriger

Hallo

Die Funktion für gedämpfte Schwingung:
[mm] y=e^{\delta\cdot{}t}A\cdot{}cos(\omega_d\cdot{}t) [/mm]
Diese Funktion hat ja nur Gültigkeit bei einer geschwindigkeitsproportionalen Dämpfung.

Nun was ist, wenn die Dämpfung linear ist, also wenn beispielsweise die Reibung konstant ist?
Da müsste doch dieser Teil der Funktion linear sein: [mm] e^{\delta\cdot{}t}A [/mm] ? Aber ich weiss gerade nicht wie...

Gruss Kuriger

        
Bezug
Gedämpfte Schwingung: Unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mi 06.10.2010
Autor: Infinit

Hallo Kuriger,
so wie das ganze dasteht, ist es eine aufklingende Schwingung.
Viele Grüße,
Infinit



Bezug
        
Bezug
Gedämpfte Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 06.10.2010
Autor: leduart

Hallo
lernt ihr eigentlich nicht DGL zu lösen?
die DGl
[mm] x''+\omega_0^2*x+\mu*g [/mm]
hat die allgemeine Lösung:
[mm] y=Asin(\omega_0*t+\phi)-\mu*g/\omega_0^2 [/mm] setz ein, und du siehst, dass es stimmt.
Gruss leduart


Bezug
                
Bezug
Gedämpfte Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Mi 06.10.2010
Autor: chrisno

Ich habe mit der DGL ein Problem: gilt die nicht nur für eine Halbschwingung? Der Reibungsterm hat kein Vorzeichenwechsel, er kann so also auch bewirken, dass sich der Betrag der Geschwindigkeit vergrößert.
Das spiegelt sich dann auch in der Lösung wieder. Die Amplitude bleibt konstant. Das passt nicht zu der Reibung.

Bezug
                        
Bezug
Gedämpfte Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mi 06.10.2010
Autor: leduart

Hallo
Danke fuer dein Bedenken, ja zu dem Term kommt noch ein sign(v), d.h. die Reibung ist immer in Gegenrichtung zu v.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]