www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Geburtstagsparadoxon
Geburtstagsparadoxon < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagsparadoxon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Sa 01.11.2008
Autor: Studentin88

Aufgabe
Wie groß ist die Wahrscheinlichkeit, dass mind. ein Schüler einer Klasse mit 26 Personen am selben Tag Geburtstag hat wie der Lehrer?

Hallo!

Also die Grundwemge ist ja
[mm] \Omega [/mm] = [mm] \{(w_{1}, ..., w_{26}); w_{k} \in {1, ... , 365}, k=1,...,26\}. [/mm]
Diese hat nach dem Urnenmodell mit Zurücklegen mit Berücksichtigung der Reihenfolge folgende Anzahl an Elementen: [mm] #\Omega [/mm] = [mm] 365^{26}. [/mm]

Hierzu schonmal ne Frage: Muss es wirklich mit Berücksichtung der Reihenfolge sein?

Sei x:= Der Geburtstag des Lehrers
Sei A das Ereignis, dass mind. einer von 26 Schülern an Tag x Geb. hat.
[mm] \overline{A} [/mm] sei das Ereignis, dass keiner der 26 Schüler an Tag x Geb. hat, also
[mm] \overline{A} =\{(w_{1}, ..., w_{26}); w_{k} \in \{1, ... , 365\} ohne \{x\}, k=1,...,26\}. [/mm]

Hierzu meine eigentliche Frage: Ist das ein Urnenmodell mit oder ohne Berücksichtigung der Reihenfolge?

Wenn ohne (was ich logischer finde), dann ist bei mir
[mm] P(\overline{A}) [/mm] = (389!-363!)/(26!*365^26)

Wie lässt sich dieser Ausdruck vereinfachen? Mit Taschenrechner lässt sich der Wert ja nicht berechnen.

Bitte um Hilfe.
Lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geburtstagsparadoxon: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Sa 01.11.2008
Autor: abakus


> Wie groß ist die Wahrscheinlichkeit, dass mind. ein Schüler
> einer Klasse mit 26 Personen am selben Tag Geburtstag hat
> wie der Lehrer?
>  Hallo!
>  
> Also die Grundwemge ist ja
> [mm]\Omega[/mm] = [mm]\{(w_{1}, ..., w_{26}); w_{k} \in {1, ... , 365}, k=1,...,26\}.[/mm]
>  
> Diese hat nach dem Urnenmodell mit Zurücklegen mit
> Berücksichtigung der Reihenfolge folgende Anzahl an
> Elementen: [mm]#\Omega[/mm] = [mm]365^{26}.[/mm]
>  
> Hierzu schonmal ne Frage: Muss es wirklich mit
> Berücksichtung der Reihenfolge sein?
>  
> Sei x:= Der Geburtstag des Lehrers
>  Sei A das Ereignis, dass mind. einer von 26 Schülern an
> Tag x Geb. hat.
>  [mm]\overline{A}[/mm] sei das Ereignis, dass keiner der 26 Schüler
> an Tag x Geb. hat, also
>  [mm]\overline{A} =\{(w_{1}, ..., w_{26}); w_{k} \in \{1, ... , 365\} ohne \{x\}, k=1,...,26\}.[/mm]
>  
> Hierzu meine eigentliche Frage: Ist das ein Urnenmodell mit
> oder ohne Berücksichtigung der Reihenfolge?
>  
> Wenn ohne (was ich logischer finde), dann ist bei mir
>  [mm]P(\overline{A})[/mm] = (389!-363!)/(26!*365^26)

Hallo, für JEDEN Schüler beträgt die Wahrscheinlichkeit, nicht am gleichen Tag wie der Lehrer Geburtstag zu haben, 364/365. Die Geburtstage der Schüler sind voneinander unabhängig.
Die Wahrscheinlichkeit, dass keiner der 26 Schüler mit dem Lehrer Geburtstag hat, beträgt somit schlicht und ergreifend [mm] (364/365)^{26}. [/mm]
Gruß Abakus

>  
> Wie lässt sich dieser Ausdruck vereinfachen? Mit
> Taschenrechner lässt sich der Wert ja nicht berechnen.
>  
> Bitte um Hilfe.
>  Lg
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Geburtstagsparadoxon: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Sa 01.11.2008
Autor: Studentin88

danke. also ein urnenmodell mit berücksichtigung der Reihenfolge.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]