www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Gebrochenrationale Funktionen
Gebrochenrationale Funktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 So 09.03.2008
Autor: chirion

Aufgabe
[mm] \integral_{0}^{1}{\bruch{2*x}{x^{2}-1} dx} [/mm]

Hallo,

Obige Aufgabe wollte ich mittels Partialbruchzerlegung lösen.
Ich habe zunächst den Nenner aufgelöst in (x+1)*(x-1) mit den Lösungen [mm] x_{1}=+1\;und\; x_{2}=-1. [/mm]

Aus:

[mm] \bruch{2*x}{x^{2}-1}=\bruch{A}{(x+1)}+\bruch{B}{(x-1)} [/mm]

folgt dann

[mm]2x=A*(x-1) + B*(x-2)[/mm]

Setzt man nun einmal für [mm]x=+1[/mm] und einmal [mm]x=-1[/mm] ein erhält man:

[mm]A=1 und B=1[/mm]


Daraus erhalte ich dann:
[mm] \integral_{}^{}{\bruch{2*x}{x^{2}-1}}=\integral_{}^{}{\bruch{1}{x+1}dx}+\integral_{}^{}{\bruch{1}{x-1}dx} =[ln(x+1)+ln(x-1)]_{0}^{1} [/mm]

Das Ergebnis soll aber [mm]ln(x^{2}-1)[/mm] lauten - zumindest laut Taschenrechner.

Wo liegt mein Fehler? Gibt es evtl. noch eine andere Möglichkeit abgesehen von der Partialbruchzerlegung um diese Aufgabe zu lösen?
Vielen Dank!
Chris

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gebrochenrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 09.03.2008
Autor: steppenhahn

Zunächst - wie du sicher durch Ableiten gemerkt hast, ist auch deine Lösung richtig. Der Taschenrechner wendet offenbar nur Logarithmusgesetze an.
Es ist

[mm]\ln(a) + \ln(b) = \ln(a*b)[/mm]

hier also speziell

[mm]\ln(x+1) + \ln(x-1) = \ln((x-1)*(x+1)) \underbrace{=}_{BINOMI} \ln(x^{2}-1)[/mm].

Übrigens kann man das auch schon bei der Funktion selbst erkennen:
Sie hat die Form

f(x) = [mm] \bruch{g'(x)}{g(x)}, [/mm]

das heißt praktisch die Ableitung der Funktion durch die Funktion selbst.
und solche Funktionen haben immer die Stammfunktion [mm]F(x) = \ln(g(x))[/mm].
Warum? Weil

[mm]f(x) = \bruch{g'(x)}{g(x)} = \underbrace{\bruch{1}{g(x)}}_{AeussereAbleitungDesLog}*\underbrace{g'(x)}_{InnereAbleitung}[/mm].

Übrigens, nur noch so allgemein :-) :

Eigentlich ist, falls [mm]f(x) =\bruch{1}{x}[/mm], die Stammfunktion [mm]F(x) = \ln(|x|)[/mm], also mit Betrag.

Bezug
                
Bezug
Gebrochenrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 So 09.03.2008
Autor: chirion

Hallo,

danke sehr für die Hilfe!
Die Sache mit den Rechenregeln für Logarithmen ist mir jetzt fast ein bißchen peinlich. ;)
Dein Tipp wegen der Ableitung der Funktion durch die Funktion selbst ist großartig. So etwas würde ich gern in meinem Skriptum finden.
Viele Grüße
Chris


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]