www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Gaußscher Algorithmus
Gaußscher Algorithmus < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußscher Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 So 15.02.2004
Autor: Sophia

Ich komme nicht auf die Lösungsmenge des lin.GLS:

Löse mit dem Gaußschen Algorihmus:
-2x+4y-6z=16
-x+0y-6z=26
4x-3y+0z=1
-3x+2y-2z=8


        
Bezug
Gaußscher Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 15.02.2004
Autor: Stefan

Hallo Sophia,

willkommen im Matheraum! :-)

Zunächst einmal: Normalerweise erwarten wir hier etwas mehr Kooperation. Es wäre zum Beispiel hilfreich gewesen, wenn du uns deinen kompletten Rechenweg hier gepostet hättest, damit wir zusammen nach deinem Fehler suchen können. So verbleibt die ganze mühselige Schreibarbeit bei mir, obwohl das nicht meine Aufgabe ist. Versuche also in Zukunft bitte mehr aktiv mitzuarbeiten. In diesem Fall, weil es dein erster Beitrag ist, will ich die komplette Rechnung einmal vorführen.

Zunächst formulieren wir das Gleichungssystem in Matrixschreibweise:

[mm]\left(\begin{array}{cccc} -2 & 4 & -6 & 16\\ -1 & 0 & -6 & 26\\ 4 & -3 & 0 & 1 \\ -3 & 2 & -2 & 8 \end{array} \right)[/mm]

Wir erweitern nun die einzelnen Zeilen so, dass in den zweiten bis vierten Zeileneinträgen der ersten Spalte das additiv Inverse des ersten Zeileneintrages der ersten Spalte  steht, also so, dass in der ersten Zeile [mm]12[/mm] und in allen anderen Zeilen [mm]-12[/mm] steht ([mm]12[/mm] ist nämlich das kleinste gemeinsame Vielfache von [mm]-2[/mm], [mm]-1[/mm], [mm]4[/mm] und [mm]-3[/mm]). Dazu müssen wir die erste Zeile mit [mm]-6[/mm], die zweite Zeile mit [mm]12[/mm], die dritte Zeile mit [mm]-3[/mm] und die vierte Zeile mit [mm]4[/mm] multiplizieren. Das Ergebnis lautet:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ -12 & 0 & -72 & 312\\ -12 & 9 & 0 & -3 \\ -12 & 8 & -8 & 32 \end{array} \right)[/mm]

Nun lassen wir die ersten Zeile unverändern und ersetzen für [mm]i=1,2,3[/mm] die [mm]i[/mm]-te Zeile durch die Summe der ersten mit der [mm]i[/mm]-ten Zeile. Das Ergebnis lautet:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ 0 & -24 & -36 & 216\\ 0 & -15 & 36 & -99 \\ 0 & -16 & 28 & -64 \end{array} \right)[/mm]

Da uns die Zahlen zu groß sind, schauen wir mal, ob wir sie durch eventuelle Divisionen der einzelnen Zeilen kleiner bekommen können. Und siehe da: Wir klnnen die zweite Zeile durch [mm]6[/mm], die dritte Zeile durch [mm]3[/mm] und die vierte Zeile durch [mm]4[/mm] teilen und erhalten:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ 0 & -4 & -6 & 36\\ 0 & -5 & 12 & -33 \\ 0 & -4 & 7 & -16 \end{array} \right)[/mm]

So, nun suchen wir das kleinste gemeinsame Vielfache von [mm]-4[/mm], [mm]-5[/mm] und [mm]-4[/mm]. Es lautet: [mm]20[/mm]. Wir erweitern nun die einzelnen Zeilen so, dass in den dritten und vierten Zeileneinträgen zweiten Spalte das additiv Inverse des zweiten Zeileneintrages der zweiten Spalte  steht, also so, dass in der zweiten Zeile [mm]-20[/mm] und in allen anderen Zeilen [mm]20[/mm] steht. Dazu müssen wir die zweite Zeile mit [mm]5[/mm], die dritte Zeile mit [mm]-4[/mm] und die vierte Zeile mit [mm]-5[/mm] multiplizieren. Das Ergebnis lautet:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ 0 & -20 & -30 & 180\\ 0 & 20 & -48 & 132 \\ 0 & 20 & -35 & 80 \end{array} \right)[/mm]

So, nun lassen wir die ersten beiden Zeilen unverändern, ersetzen die dritte Zeile durch die Summe der zweiten mit der dritten Zeile sowie die vierte Zeile durch die Summe der zweiten mit der vierten Zeile. Wir erhalten:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ 0 & -20 & -30 & 180\\ 0 & 0 & -78 & 312 \\ 0 & 0 & -65 & 260 \end{array} \right)[/mm]

Zum Glück können wir nun die dritte Zeile durch [mm]78[/mm] und die vierte Zeile durch [mm]65[/mm] teilen. Das Ergebnis lautet:

[mm]\left(\begin{array}{cccc} 12 & -24 & 36 & -96\\ 0 & -20 & -30 & 180\\ 0 & 0 & -1 & 4 \\ 0 & 0 & -1 & 4 \end{array} \right)[/mm]

Man sieht, dass eine Lösung existiert.

Schreiben wir das Ganze mal wieder als Gleichungssystem:

[mm]12x - 24y + 36z = -96[/mm]
[mm]-20y - 30z = 180[/mm]
[mm]-z = 4[/mm]
[mm]-z = 4[/mm].

Daraus folgt

[mm]z=-4[/mm]

sowie:

[mm]-20y -30\cdot(-4) = 180 \Leftrightarrow -20y = 60 \Leftrightarrow y = -3[/mm]

und

[mm]12x - 24\cdot(-3) + 36\cdot(-4) = -96 \Leftrightarrow 12x = -24 \Leftrightarrow x = -2[/mm].

Die Lösung lautet also:

[mm](x,y,z) = (-2,-3,-4)[/mm].


Jetz alles klar? Hast du deinen Fehler gefunden?

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]