www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Gaußsche Normalverteilung
Gaußsche Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Normalverteilung: Körpergröße
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 20.12.2007
Autor: ernstl

Aufgabe
Für die Einwohner eines Landes wurde eine mittlere Körpergröße 1,71m ermittelt. Außerdem wurde festgestellt, dass bei 50% der Einwohner die Körpergröße um weniger als10% von dieser mittleren Körpergröße abweicht.

Die Zufallsvariable G gibt die Körpergröße eines zufällig ausgewählten Einwohners dieses Landes an.

a) welche Verteilung eignet sich gut als Näherung für die Verteilung von G? Berechne die Parameter dieser Verteilung.

Berechne aufgrund dieser Näherung:

i) V(G)
ii) P({G > 1,80})
iii) P({G < 1,50})
iv) P({1,50 < G < 1,90})
v) P({G > 2,30})

Hinweis: Für eine normal verteilte Zufallsvariable X und eine reelle, positive Konstante c gilt:
P({|X - [mm] \mu| \le [/mm] c}) = ... = 2 * "Fi" * [mm] (\bruch{c}{\delta}) [/mm] -1

Dabei bezeichnet Fi die Verteilungsfunktion der Standardnormalverteilung (s. z.B. Wertetabelle in Papula)

Hallo,

also ich bin leider schon an der a) gescheitert. Wie sieht denn diese Verteilungsfunktion aus?
Es wäre außerdem nett, wenn mir jemand zur b) vielleicht zumindest zu i) und iv) die Ergebnisse nennen kann (die anderen kann ich mir dann denke ich selber ableiten, aber wäre auch für andere Ergenisse dankbar)

Ernst

        
Bezug
Gaußsche Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:51 Do 20.12.2007
Autor: luis52

Hallo Ernst,

der Hinweis zeigt ja schon in welche Richtung es gehen soll:  G ist
normalverteilt mit gewissen Parametern [mm] $\operatorname{E}[G]=\mu=1.71$ [/mm] und
[mm] $\operatorname{Var}[G]=\sigma^2$. [/mm] Letzteren gilt es  zu
bestimmen.

Den Vorgaben und dem Hinweis entnimmt man weiter

[mm] $0.5=P(|X-\mu|<0.1\times1.71)= P(|X-\mu|\le 0.1\times1.71) =2\Phi\left(\frac{0.171}{\sigma}\right)-1$. [/mm]

Also ist [mm] $\Phi(0.171/\sigma)=0.75$. [/mm] In deiner Tabelle wirst du finden:
[mm] $0.171/\sigma=0.6745$, [/mm] also [mm] $\sigma=0.115$ [/mm] Damit haben wir a) und (b,i):
[mm] $\operatorname{Var}[G]=\sigma^2=0.115^2=0.01$. [/mm]

(b,iv):
[mm] $P(1.5
vg Luis                

Bezug
                
Bezug
Gaußsche Normalverteilung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Do 20.12.2007
Autor: ernstl

Exzellent, vielen Dank! Hab noch eine Minute bis ich zum Bus muss und kann mir heute die Punkte für die Aufgabe unverhofft doch noch mitnehmen! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]