www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gauss'scher Algorithmus mit 6
Gauss'scher Algorithmus mit 6 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauss'scher Algorithmus mit 6 : Frage
Status: (Frage) beantwortet Status 
Datum: 10:23 Di 04.01.2005
Autor: l889

Hi!

Habe ein Problem beim Lösen mit dem Gauss'schen Algorithmus:

3x-4z = -y-a+4b-3c
x = -y-z+2a+2b+2c
z-y = a-b

Habe schon mehrmals probiert das System zu lösen, hat bisher allerdings nie funktioniert. Hat irgendwer eine Idee, wie ich dieses System relativ leicht lösen kann?

Gruß Jonas




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gauss'scher Algorithmus mit 6 : Nur 3
Status: (Antwort) fertig Status 
Datum: 11:00 Di 04.01.2005
Autor: Paulus

Lieber Jonas

im Allgemeinen gilt die Abmachung, dass die Unbekannten mit x, y und z bezeichnet werden. Falls diese Buchstaben nicht ausreichen, bedient man sie einer Schreibweise mit Indizes.

Die Variablen a,b und c hingegen werden als bekannte, gegebene Grössen aufgefasst.

Somit besteht die Aufgabe, nur nach x, y und z aufzulösen.
Zu diesem Zweck bringst du zunächst alle Unbekannten auf die linke Seite, und die Bekannten auf die rechte Seite.

Das sähe dann etwas so aus:

$3x+y-4z=-a+4b-3c_$
$x+y+z=2a+2b+2c_$
$-y+z=a-b_$

Als Tipp: wenn du die erste Gleichung an den Schluss setzt, geht das Ganze viel einfacher.

Löse also einfach dieses Gleichungssystem nach x, y und z auf:

$x+y+z=2a+2b+2c_$
$-y+z=a-b_$
$3x+y-4z=-a+4b-3c_$

Kannst du das mal versuchen und deinen Lösungsweg hier zeigen, damit wir allfällig auftauchende Schwierigkeiten aus dem Weg räumen können? :-)

Zur Kontrolle: ich habe erhalten:

$x=a+b_$
$y=b+c_$
$z=a+c_$

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Gauss'scher Algorithmus mit 6 : OK
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 04.01.2005
Autor: l889

OK, funktioniert... Danke!

I: x + y + z = 2a + 2b + 2c
II: -y + z = a - b
III: 3x + y - 4z = -a + 4b + 3c

Zu III -3 * I addieren, dann dazu -2 * II addieren, durch 9 teilen, fertig ;-)

x = a + b
y = b + c
z = a + c

Thx Paul!

Bezug
                        
Bezug
Gauss'scher Algorithmus mit 6 : Sehr gut!
Status: (Antwort) fertig Status 
Datum: 13:02 Di 04.01.2005
Autor: Paulus

Hallo Jonas

na siehst du, das war ja gar nicht so schwierig. (Auch wenn du dich in der Gleichung III) noch leicht vertippt hast ;-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]