www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Derive" - Gauß'sche Zahlenebene
Gauß'sche Zahlenebene < Derive < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß'sche Zahlenebene: Funktion darstellen
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 25.03.2008
Autor: Jujutsuclaudi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

also ich bin grade dabei Derive zu erlernen und wollte es schon mal für ne Matheaufgabe nutzen:
Hier sollte ich t--> it+sint auf der Gauß'schem Zahlenebene abbilden.
Ich weiß auch wie das aussieht, aber derive hat irgendwie etwas völlig anderes dargestellt...Ich hab zwar bei optionen plot real und imaginärteil eingestellt, aber der trennt die funktion dann in 2 graphen auf...
und naja ich hab ka wie ich das änderen kann

danke schonmal

        
Bezug
Gauß'sche Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 25.03.2008
Autor: Event_Horizon

Hallo!

Ich kenne keinen Weg, eine komplexe Funktion direkt plotten zu lassen. Du kannst aber in Derive Ortskurven zeichnen lassen:

[x-Werte,y-Werte]

Darein nun

[RE(f(x)), IM(f(x))]

Du weist den Realteil also der x-Richtung zu , und den Imaginärteil der y-Richtung.

Dieses Objekt kannst du nun plotten!  Falls nicht, irgendwo in den Menüs im Plot-Modus gibt' ne option "Ausdruck Vereinfachen". Diesen mußt du aktivieren.

Bezug
                
Bezug
Gauß'sche Zahlenebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Di 25.03.2008
Autor: Jujutsuclaudi

Ok gut,

aber wenn cih das jetzt zeichenen lassen will, kommt ne grade auf der X-Achse.. also irgendwas stimmt noch net.
Frage: um die Funktion als Ortskruve darstellen zu lassen, was muß ich da genau machen?

Danke schonmal

Bezug
                        
Bezug
Gauß'sche Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Di 25.03.2008
Autor: Event_Horizon

Naja, genau das, was ich gesagt habe:

f(x) := î·t + SIN(t)

[RE(f(x)), IM(f(x))]


Und dann den letzten Ausdruck zeichnen lassen. er fragt dich vorher noch, von wo bis wo das x gehen soll.

Natürlich kannst du es dir einfacher machen, denn Real- und Imaginärteil sind hier ja kein Problem:

[SIN(t), t]


Herauskommen sollte eine Sinusfunktion um die imaginäre Achse.

Bezug
                                
Bezug
Gauß'sche Zahlenebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Di 25.03.2008
Autor: Jujutsuclaudi

ja ok,

es hat soweit geklappt^^ wobei ich mich noch etwas damit beschäftigen werden muß, bis ich sicher mit Derive bin

Aber Danke :-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]