www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wiederholung Algebra (Schule)" - Gauß Alg. Matrizen Inversion
Gauß Alg. Matrizen Inversion < Wiederholung Algebra < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wiederholung Algebra (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß Alg. Matrizen Inversion: Unterschiede
Status: (Frage) beantwortet Status 
Datum: 10:21 Fr 24.01.2020
Autor: Bart0815

Hallo zusammen,

gibt es eigentlich einen Unterschied zwischen dem Gauß Algorithmus und der Matrizen Inversion oder Bezeichnet beides das gleiche Vorgehen? Sollte es Unterschiede geben, wo liegen diese?

Danke euch.

        
Bezug
Gauß Alg. Matrizen Inversion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Fr 24.01.2020
Autor: fred97


> Hallo zusammen,
>  
> gibt es eigentlich einen Unterschied zwischen dem Gauß
> Algorithmus und der Matrizen Inversion oder Bezeichnet
> beides das gleiche Vorgehen? Sollte es Unterschiede geben,
> wo liegen diese?
>  
> Danke euch.


Ist $A$ eine quadratische $n [mm] \times [/mm] n$ - Matrix, so führe die erweiterte Matrix [mm] $(A|I_n)$ [/mm] mit Gauß in Zeilennormalform $(C|B)$ über.

Dann gilt: $A$ is invertierbar [mm] \gdw [/mm] $C= [mm] I_n$. [/mm] In diesem Fall ist dann [mm] $B=A^{-1}.$ [/mm]



Bezug
                
Bezug
Gauß Alg. Matrizen Inversion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Fr 24.01.2020
Autor: Bart0815

Also ist sozusagen die Matrix Inversion der erste Schritt vor dem Gauß Algorithmus bzw. dessen Berechnung?

Bezug
                        
Bezug
Gauß Alg. Matrizen Inversion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Fr 24.01.2020
Autor: fred97


> Also ist sozusagen die Matrix Inversion der erste Schritt
> vor dem Gauß Algorithmus bzw. dessen Berechnung?  


Nein. Führe den Gauß -Algorithmus , so wie ich es oben beschrieben habe, durch. Kommt [mm] $C=I_n$ [/mm] heraus, so ist A invertierbar und [mm] $B=A^{-1}$ [/mm]

Ist $C [mm] \ne I_n$, [/mm] so ist A nicht invertierbar.

Bezug
        
Bezug
Gauß Alg. Matrizen Inversion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Sa 25.01.2020
Autor: HJKweseleit

Den Gauß-Algorithmus kannst du auch durchführen, wenn du eine nicht-quadratische Matrix hast. Im Falle eines unterbestimmten Systems (mehr Unbekannte als Gleichungen) kannst du damit eine einfache Darstellung des Lösungsraums finden; im Fall eines überbestimmten Systems findest du damit heraus, ob es eine Lösung (oder einen Lösungsraum) gibt (überschüssige "Nullzeile(n)") oder keine Lösung ("unvollständige Nullzeile(n)"). In beiden Fälle gibt es keine inverse Matrix.

Das Gauß-Verfahren kann also mehr als nur invertieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wiederholung Algebra (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]