www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Gauß-Fehlerintegral
Gauß-Fehlerintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß-Fehlerintegral: Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:44 Di 13.05.2008
Autor: Damn88

Aufgabe
Sei I := [mm] \integral_{0}^{\infty}{e^{-x^2}dx} [/mm] das Gauß-Fehlerintegral. Zeige für n >= 1:

a) [mm] \integral_{0}^{\infty}{e^{-nx^2}dx} [/mm] = [mm] \bruch{1}_{\wurzel(n)} [/mm] *I

[mm] b)\integral_{0}^{1}{(1-x^2)^n dx} \le \integral_{0}^{1}{e^{-nx^2}dx} \le \integral_{0}^{\infty}{e^{-nx^2}dx} \le \integral_{0}^{\infty}{\bruch{1}{(1+x^2)^n}}dx [/mm]

c) Sei [mm] w_n [/mm] die Wallissche Folge. Für alle n >= 2:
[mm] \bruch{n}{2n+1} *w_n \le I^2 \le \bruch{n}{2n-1} [/mm] * [mm] \bruch{1}{w_{n-1}}* \bruch{\pi^2}{4} [/mm]

Hallo,
die a) habe ich schon mit Substitution lösen können
die b) jedoch macht mir noch was zu schaffen

zuerst betrachte ich mal die erste ungleichung:
da 1+x [mm] \le e^x: [/mm]
[mm] \integral_{0}^{1}{(1-x^2)^n dx} \le \integral_{0}^{1}{e^{-x^2}^ndx} [/mm] = [mm] \integral_{0}^{1}{e^{-nx^2}dx} [/mm]
funktioniert schon mal

aber dann die zweite ungleichung:

ich hatte mir überlegt zu zeigen dass [mm] \integral_{1}^{\infty}{e^{-nx^2}dx} [/mm] >0 ist
aber das ist ja gleich: [mm] [\bruch{1}{-2nx}*e^{-nx^2}]_1^\infty [/mm]
aber das in der Klammer ist <0 also nicht so offensichtlich.
deswegen wollte ich zeigen dass
[mm] \limes_{m\rightarrow\infty}(\bruch{1}{-2nm}*e^{-nm^2} [/mm] - [mm] \bruch{1}{2n}*e^{-n}) [/mm] >0 ist

[mm] \limes_{m\rightarrow\infty}(\bruch{1}{-2nm}*e^{-nm^2} [/mm] - [mm] \bruch{1}{2n}*e^{-n}) [/mm]
= [mm] \limes_{m\rightarrow\infty}(\bruch{e^{-n}}{-2n}*(\bruch{1}{m}*e^{m^2}+1) [/mm]
>= [mm] \limes_{m\rightarrow\infty}(\bruch{e^{-n}}{-2n}*(\bruch{1}{m}*(1+m^2)+1) [/mm]
= [mm] \limes_{m\rightarrow\infty}(\bruch{e^{-n}}{-2n}*(\bruch{1}{m}+1+m) [/mm]
[mm] =\bruch{e^{-n}}{-2n}*(\limes_{m\rightarrow\infty} (\bruch{1}{m}+1+m) [/mm]

Nun geht der Limes gegen unendlich, aber [mm] \bruch{e^{-n}}{-2n} [/mm] ist doch negativ.. also wäre der gesamte term kleiner 0, aber ich will ja das Gegenteil zeigen!

Hab ich irgendwo einen Fehler gemacht?
Habt ihr vielleicht einen Tipp, wie man es besser machen kann?

        
Bezug
Gauß-Fehlerintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Mi 14.05.2008
Autor: Merle23


> ich hatte mir überlegt zu zeigen dass
> [mm]\integral_{1}^{\infty}{e^{-nx^2}dx}[/mm] >0 ist
>  aber das ist ja gleich:
> [mm][\bruch{1}{-2nx}*e^{-nx^2}]_1^\infty[/mm]

[mm] e^{-nx^2} [/mm] besitzt soweit ich weiss keine Stammfunktion die man 'elementar' angeben kann, also als einen geschlossenen Ausdruck mit irgendwelchen anderen Funktionen.

[mm] \bruch{1}{-2nx}*e^{-nx^2} [/mm] leite das mal ab. Da kommt was total anderes raus, denn du hast anscheinend vergessen, dass du das x im Nenner auch noch ableiten musst.


Bezug
                
Bezug
Gauß-Fehlerintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Mi 14.05.2008
Autor: Damn88

ohje ohje danke XD hab ich echt vergessen..
aber wie kann ich denn dann die ungleichung zeigen?

Bezug
                        
Bezug
Gauß-Fehlerintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 14.05.2008
Autor: Merle23


> [mm] \integral_{0}^{1}{(1-x^2)^n dx} \le \integral_{0}^{1}{e^{-nx^2}dx} [/mm]

Im Punkt 0 stimmen beide überein, aber dann fällt [mm] 1-x^2 [/mm] schneller ab - das kannst du zeigen, indem du die Ableitungen vergleichst.

> [mm] \integral_{0}^{1}{e^{-nx^2}dx} \le \integral_{0}^{\infty}{e^{-nx^2}dx} [/mm]

[mm] exp(-nx^2) [/mm] ist überall positiv, also ist dieser Teil klar.

> [mm] \integral_{0}^{\infty}{e^{-nx^2}dx} \le \integral_{0}^{\infty}{\bruch{1}{(1+x^2)^n}}dx [/mm]

Hier könntest du versuchen genauso wie bei der ersten Ungleichung zu argumentieren.. ist bloß etwas schwerer.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]