www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Gauß-ALg. und Laplace. Ent.
Gauß-ALg. und Laplace. Ent. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß-ALg. und Laplace. Ent.: Unterschiedliche Ergebnisse
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 11.09.2007
Autor: vohigu

Aufgabe
Berechen Sie die Determinante der Folgenden Matrix sowohl durch Entwicklung nach einer Zeile oder Spalte als auch durch den Gauß-Algorithmus:
[mm] \pmat{ 3 & 0 & 2 & 4 \\ -1 & -4 & 1 & -2 \\ 2 & -2 & -2 & -1 \\ 0 & 1 & 3 & 5} [/mm]

Ich bekommen mit Gauß folgende Dreiecksmatrix:
[mm] \pmat{ -1 & -4 & 1 & -2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 21} [/mm]
Meine Lösung ist somit det A = -105

Mit dem Laplaceschem Entwicklungssatz komme ich aber auf folgende Lösung:
3* [mm] \vmat{ -4 & 1 & -2 \\ -2 & -2 & -1 \\ 1 & 3 & 5} [/mm] - 0 *  [mm] \vmat{ -1 & 1 & -2\\ 2 & -2 & -1 \\ 0 & 3 & 5} [/mm] + 2* [mm] \vmat{ -1 & 4 & -2 \\ 2 & -2 & -1 \\ 0 & 1 & 5} [/mm] - 4* [mm] \vmat{ -1 & -4 & 1 \\ 2 & -2 & -2 \\ 0 & 1 & 3} [/mm]

Ergibt bei mir det A = 133
So meine Frage ist was hab ich falsch gemacht?

        
Bezug
Gauß-ALg. und Laplace. Ent.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 11.09.2007
Autor: schachuzipus

Hallo Marius,

nun, beides stimmt nicht ;-)

Aber das erste Ergebnis ist nahe dran. Du hast irgendwo nen VZF gemacht.

Es sollte $det(A)=105$ sein.

Hast du vllt bei der Umformung in ZSF mal Zeilen vertauscht und unterschlagen, dass die Determinante dabei ihr VZ ändert?

Oder ne Zeile mit -1 multipliziert?

> Berechen Sie die Determinante der Folgenden Matrix sowohl
> durch Entwicklung nach einer Zeile oder Spalte als auch
> durch den Gauß-Algorithmus:
>  [mm]\pmat{ 3 & 0 & 2 & 4 \\ -1 & -4 & 1 & -2 \\ 2 & -2 & -2 & -1 \\ 0 & 1 & 3 & 5}[/mm]
>  
> Ich bekommen mit Gauß folgende Dreiecksmatrix:
>  [mm]\pmat{ -1 & -4 & 1 & -2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 21}[/mm]
>  
> Meine Lösung ist somit det A = -105
>  
> Mit dem Laplaceschem Entwicklungssatz komme ich aber auf
> folgende Lösung:
>  3* [mm]\vmat{ -4 & 1 & -2 \\ -2 & -2 & -1 \\ 1 & 3 & 5}[/mm] - 0 *  
> [mm]\vmat{ -1 & 1 & -2\\ 2 & -2 & -1 \\ 0 & 3 & 5}[/mm] + 2* [mm]\vmat{ -1 & \red{-}4 & -2 \\ 2 & -2 & -1 \\ 0 & 1 & 5}[/mm]
> - 4* [mm]\vmat{ -1 & -4 & 1 \\ 2 & -2 & -2 \\ 0 & 1 & 3}[/mm]
>  
> Ergibt bei mir det A = 133
>  So meine Frage ist was hab ich falsch gemacht?

Ich hab das hier nicht nachgerechnet, mir ist nur auf die Schnelle aufgefallen, dass da in der einen Unterdeterminante ne [mm] \red{-4} [/mm] hin muss.

Ich hab hier noch nen link zu einem netten pdf über Rechenregeln für Determinanten.

Falls dich das interessiert, schau mal rein, ich find's gut ;-)

http://www-user.tu-chemnitz.de/~benner/Lehre/HM1/DeterminantenRegeln.pdf


LG

schachuzipus

Bezug
                
Bezug
Gauß-ALg. und Laplace. Ent.: Rechnen
Status: (Frage) beantwortet Status 
Datum: 21:17 Di 11.09.2007
Autor: vohigu

kann mir das hier bitte jemand vorrechnen?

Bezug
                        
Bezug
Gauß-ALg. und Laplace. Ent.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Di 11.09.2007
Autor: schachuzipus

Jo,

Entwicklung nach der 1. Zeile - also nach deinem Ansatz

[mm] $det(A)=3\cdot{}det\pmat{ -4 & 1 & -2 \\ -2 & -2 & -1 \\ 1 & 3 & 5}+2\cdot{}det\pmat{ -1 & -4 & -2 \\ 2 & -2 & -1 \\ 0 & 1 & 5}-4\cdot{}det\pmat{ -1 & -4 & 1 \\ 2 & -2 & -2 \\ 0 & 1 & 3}$ [/mm]


Die Determinanten der [mm] $3\times [/mm] 3$ Untermatrizen nun mit Sarrus berechnen:


[mm] $=3\cdot{}\left[(-4)\cdot{}(-2)\cdot{}5+1\cdot{}(-1)\cdot{}1+(-2)\cdot{}(-2)\cdot{}3-1\cdot{}(-2)\cdot{}(-2)-3\cdot{}(-1)\cdot{}(-4)-5\cdot{}(-2)\cdot{}1\right]$ [/mm]

[mm] $+2\cdot{}\left[(-1)\cdot{}(-2)\cdot{}5+(-4)\cdot{}(-1)\cdot{}0+(-2)\cdot{}2\cdot{}1-0\cdot{}(-2)\cdot{}(-2)-1\cdot{}(-1)\cdot{}(-1)-5\cdot{}2\cdot{}(-4)\right]$ [/mm]

[mm] $-4\cdot{}\left[(-1)\cdot{}(-2)\cdot{}3+(-4)\cdot{}(-2)\cdot{}0+1\cdot{}2\cdot{}1-0\cdot{}(-2)\cdot{}1-1\cdot{}(-2)\cdot{}(-1)-3\cdot{}2\cdot{}(-4)\right]$ [/mm]

[mm] $=3\cdot{}(40-1+12-4-12+10)+2(10-4-1+40)-4(6+2-2+24)=3\cdot{}45+2\cdot{}45-4\cdot{}30=135+90-120=105$ [/mm]



LG

schachuzipus

Bezug
                                
Bezug
Gauß-ALg. und Laplace. Ent.: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Di 11.09.2007
Autor: vohigu

ja hatte nochmal nachgerechnet, war ein bock in meiner Rechnung.
Danke dir vielmals musste testen ob ich das prinzip verstanden habe.
bist korekt, danke nochmals für deine zeit.

Bezug
                                        
Bezug
Gauß-ALg. und Laplace. Ent.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Di 11.09.2007
Autor: schachuzipus

Jo kein Ding,

es gibt ein nettes kleines online-tool, das dir Determinanten ausrechnet

Schau mal auf

[mm] \center{\text{www.mathetools.de}} [/mm]


Da im linken Reiter unter Studium...

Damit hab ich dein erstes Ergebnis  auch zuerst mal checken lassen ;-)


LG

schachuzipus

Bezug
        
Bezug
Gauß-ALg. und Laplace. Ent.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:54 Sa 03.11.2007
Autor: jura

mein problem ist wohl eher der gauss-algo- ich komme einfach nicht auf obige det in stufenform- kannst du mir evtl vorrechnen (oder einzelne zwischenschritte angeben)?? die restliche det-auflösung ist mir ja dann klar....nur wenn der anfang leider schon falsch is....

Bezug
                
Bezug
Gauß-ALg. und Laplace. Ent.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Mo 05.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]