www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ganzzahlig teilbare Gleichung
Ganzzahlig teilbare Gleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzzahlig teilbare Gleichung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 05.10.2006
Autor: Vertex

Aufgabe
Für welche n [mm] \in \IN [/mm] ist

n(n+1)(2n+1)  durch 6 ganzzahlig teilbar

Hallo nochmal, heute gehts mit meinen Fragen Schlag auf Schlag...

Mit ein wenig herumprobieren, kommt man recht schnell darauf das die Formel anscheinend für alle n [mm] \in \IN [/mm] ganzzahlig durch 6 teilbar ist.
Das will allerdings bewiesen werden und so mache ich mich also an die vollständige Induktion:

Induktionsanfang mit n=1

1(1+1)(2*1+1) =
1*2*3 = 6

Induktionsschritt auf n+1, es gelte die Induktionsannahme das n(n+1)(2n+1) für alle n [mm] \in \IN [/mm] ganzahlig durch 6 teilbar ist

(n+1)[(n+1)+1][2(n+1)+1]

Ich wills kurz machen...
Nach etwas umformen kommt man nun auf:

n(n+1)(2n+1) + [mm] 6(n+1)^{2} [/mm]

Soweit so gut. Links vom "+" haben wir laut Induktionsannahme ein vielfaches von 6 und rechts haben wir ebenfalls ein vielfaches von 6 stehen.

Wenn man zwei vielfache von 6 addiert, erhält man ein vielfaches von 6... aber warum? Wie kann ich das mathematisch korrekt begründen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ganzzahlig teilbare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Do 05.10.2006
Autor: M.Rex

Hallo

Nennen wir die Vielfachen mal m und n

Wir wissen ja, dass m ein Vielfaches von6 ist, es gibt also ein [mm] \overline{m}, [/mm] mit [mm] 6\overline{m}=m [/mm]
Dasselbe gilt für [mm] 6\overline{n}=n [/mm]

Jetzt wissen wir, dass
[mm] m+n=6\overline{m}+6\overline{n}=6(\overline{m}+\overline{n}), [/mm] was ja auf jeden Fall ein Vielfaches von 6 ist.

Marius

Bezug
                
Bezug
Ganzzahlig teilbare Gleichung: Nochmals Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Do 05.10.2006
Autor: Vertex

Schlicht und einfach!

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]