Galoistheorie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen. Bevor ich meine Frage formuliere, erstmal das Problem:
Sei f ein Polynom aus [mm] \IQ[x] [/mm] und [mm] a_1,..., a_n [/mm] die Nullstellen über [mm] \IC. [/mm] Ich betrachte jetzt den Zerfällungskörper von f, gegeben durch
[mm] \IQ(a_1,...,a_n)=:L [/mm]
Nun gilt ja: für alle g aus [mm] Gal(L/\IQ) [/mm] ist auch [mm] g(a_i) [/mm] eine Nullstelle von f. [mm] (1\le i\le [/mm] n)
Jetzt betrachte ich ein weiteres Polynom h aus [mm] \IQ[x] [/mm] und es soll gelten, dass h über L in Linearfaktoren zerfällt. Seien [mm] b_1,..,b_k [/mm] die Nullstellen in L. Aber es soll NICHT unbedingt gelten [mm] L=\IQ(b_1,...,b_k), [/mm] sondern lediglich [mm] \IQ(b_1,...,b_k)\subset [/mm] L.
Jetzt meine Frage, die mich ohne Ende wurmt:
Ist dann für jedes g aus [mm] Gal(L/\IQ) [/mm] auch [mm] g(b_j) [/mm] eine Nullstelle von h? [mm] (1\le j\le [/mm] k) Anscheinend ist es ja so, aber warum?
Ich bedanke mich schon mal :)
Mfg, kulli
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:07 Sa 19.01.2013 | Autor: | felixf |
Moin kulli!
> Hallo zusammen. Bevor ich meine Frage formuliere, erstmal
> das Problem:
>
> Sei f ein Polynom aus [mm]\IQ[x][/mm] und [mm]a_1,..., a_n[/mm] die
> Nullstellen über [mm]\IC.[/mm] Ich betrachte jetzt den
> Zerfällungskörper von f, gegeben durch
>
>
> [mm]\IQ(a_1,...,a_n)=:L[/mm]
>
> Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> eine Nullstelle von f. [mm](1\le i\le[/mm] n)
Genau. Weisst du, wie man das beweist?
> Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> es soll gelten, dass h über L in Linearfaktoren zerfällt.
> Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
>
> Jetzt meine Frage, die mich ohne Ende wurmt:
>
> Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> aber warum?
Ja, das ist so. Und es ist aus genau dem gleichen Grund so, warum es fuer $f$ oben selber gilt: weil $g$ alle Elemente aus [mm] $\IQ$, [/mm] und somit alle Koeffizienten von $h$ festhaelt. Deswegen gilt [mm] $h(g(b_j)) [/mm] = [mm] g(h(b_j)) [/mm] = g(0) = 0$.
LG Felix
|
|
|
|
|
> Moin kulli!
> > Hallo zusammen. Bevor ich meine Frage formuliere, erstmal
> > das Problem:
> >
> > Sei f ein Polynom aus [mm]\IQ[x][/mm] und [mm]a_1,..., a_n[/mm] die
> > Nullstellen über [mm]\IC.[/mm] Ich betrachte jetzt den
> > Zerfällungskörper von f, gegeben durch
> >
> >
> > [mm]\IQ(a_1,...,a_n)=:L[/mm]
> >
> > Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> > eine Nullstelle von f. [mm](1\le i\le[/mm] n)
>
> Genau. Weisst du, wie man das beweist?
Im Prinzip doch genau so, wie du es unten gemacht hast, oder?
> > Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> > es soll gelten, dass h über L in Linearfaktoren zerfällt.
> > Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> > unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> > [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
> >
> > Jetzt meine Frage, die mich ohne Ende wurmt:
> >
> > Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> > Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> > aber warum?
>
> Ja, das ist so. Und es ist aus genau dem gleichen Grund so,
> warum es fuer [mm]f[/mm] oben selber gilt: weil [mm]g[/mm] alle Elemente aus
> [mm]\IQ[/mm], und somit alle Koeffizienten von [mm]h[/mm] festhaelt. Deswegen
> gilt [mm]h(g(b_j)) = g(h(b_j)) = g(0) = 0[/mm].
ohje.. natürlich :) ich danke dir!!!
> LG Felix
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:48 Sa 19.01.2013 | Autor: | felixf |
Moin!
> > > Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> > > eine Nullstelle von f. [mm](1\le i\le[/mm] n)
> >
> > Genau. Weisst du, wie man das beweist?
>
> Im Prinzip doch genau so, wie du es unten gemacht hast,
> oder?
Ja :)
> > > Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> > > es soll gelten, dass h über L in Linearfaktoren zerfällt.
> > > Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> > > unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> > > [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
> > >
> > > Jetzt meine Frage, die mich ohne Ende wurmt:
> > >
> > > Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> > > Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> > > aber warum?
> >
> > Ja, das ist so. Und es ist aus genau dem gleichen Grund so,
> > warum es fuer [mm]f[/mm] oben selber gilt: weil [mm]g[/mm] alle Elemente aus
> > [mm]\IQ[/mm], und somit alle Koeffizienten von [mm]h[/mm] festhaelt. Deswegen
> > gilt [mm]h(g(b_j)) = g(h(b_j)) = g(0) = 0[/mm].
>
> ohje.. natürlich :) ich danke dir!!!
Bitte!
LG Felix
|
|
|
|