www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Galoistheorie
Galoistheorie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoistheorie: Aufgabe
Status: (Frage) überfällig Status 
Datum: 15:11 Sa 18.11.2006
Autor: sonnenfee23

Aufgabe
Man definiert die Galoisgruppe Gal(f) eines Polynoms f [mm] \in [/mm] K[x] die Galoisgruppe Gal(E|K), wobei E der Zerfällungskörper von f ist. Sei f(x) [mm] :=x^4+x^2+1 \in \IQ[x], [/mm] berechnen Sie:
a) die Galoisgruppe Gal(f), indem Sie die Präsentation der Gruppe angeben
b) die Ordnung der Galoisgruppe Gal(f) und die Isomorphieklasse
c] die normalen Erweiterungen B|K mit E [mm] \supseteq [/mm] B [mm] \supseteq [/mm] K.

Hallo!

Ich kenne mich mit den Galoisgruppen überhaupt nicht aus, wie gehe ich bei so einer Aufgabe vor und wie berechne ich diese? Wäre lieb,wenn mir jemand helfen könnte!!

MfG

Ich habe dies in keinem anderen Forum bisher geschrieben oder gefragt!

        
Bezug
Galoistheorie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 21.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]