www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Galoist. Automorphismen
Galoist. Automorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoist. Automorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 29.11.2008
Autor: Fry

Hallo :D,

folgendes Problem: Sei [mm] K\subset E\subset [/mm] L, L/K galoissch.
Dann gilt: Ist E/K galoissch, dann beschränkt sich jeder K-Automorphismus von L zu einem K-Automorphismus von E.

Warum ist das so? Also ich hab mir gedacht, dass djederK-Autom. [mm] \sigma: L\to [/mm] L auch wegen der Normalität von L/K auch ein K-Homom. [mm] L\to \overline{L} [/mm] ist . Dann könnte ich ja einen K-Autom. [mm] \psi E\to \overline{L} [/mm] definieren, für den gilt: [mm] \psi=\sigma|_{E} [/mm] (schließlich ist jeder algebr. Abschluss von L auch einer von E)
Weil ja nun E/K normal ist, beschränkt sich [mm] \psi [/mm] zum Autom. [mm] E\to [/mm] E. Und da [mm] \psi=\sigma|_{E} [/mm] beschränkt sich nun auch [mm] \sigma [/mm] zu K-Autom. [mm] E\to [/mm] E.

Kann das leider nicht besser formulieren. Kann mir jemand weiterhelfen ?
Danke für eure Hilfe!

LG
Christian

        
Bezug
Galoist. Automorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:30 Mo 01.12.2008
Autor: felixf

Hallo Christian

> folgendes Problem: Sei [mm]K\subset E\subset[/mm] L, L/K galoissch.
>  Dann gilt: Ist E/K galoissch, dann beschränkt sich jeder
> K-Automorphismus von L zu einem K-Automorphismus von E.

Ich vermute mal, ihr habt normal so definiert, dass $L/K$ normal heisst wenn jeder $K$-Homomorphismus [mm] $\varphi [/mm] : L [mm] \to \overline{L} [/mm] = [mm] \overline{K}$ [/mm] mit seinem Bild bereits in $L$ liegt?

> Warum ist das so? Also ich hab mir gedacht, dass
> djederK-Autom. [mm]\sigma: L\to[/mm] L auch wegen der Normalität von
> L/K auch ein K-Homom. [mm]L\to \overline{L}[/mm] ist . Dann könnte
> ich ja einen K-Autom. [mm]\psi E\to \overline{L}[/mm] definieren,
> für den gilt: [mm]\psi=\sigma|_{E}[/mm] (schließlich ist jeder
> algebr. Abschluss von L auch einer von E)

Ja.

>  Weil ja nun E/K normal ist, beschränkt sich [mm]\psi[/mm] zum
> Autom. [mm]E\to[/mm] E. Und da [mm]\psi=\sigma|_{E}[/mm] beschränkt sich nun
> auch [mm]\sigma[/mm] zu K-Autom. [mm]E\to[/mm] E.

Fast; du musst noch zeigen, dass er auch surjektiv ist.

> Kann das leider nicht besser formulieren. Kann mir jemand
> weiterhelfen ?

Leicht anders formuliert:

Sei [mm] $\varphi [/mm] : L [mm] \to [/mm] L$ ein Automorphismus ueber $K$. Dann ist [mm] $\varphi|_E [/mm] : E [mm] \to [/mm] L [mm] \subseteq \overline{L} [/mm] = [mm] \overline{E}$ [/mm] ein $K$-Homomorphismus, und da $E/K$ normal ist, folgt [mm] $\varphi|_E(E) \subseteq [/mm] E$.

Du hast also einen $K$-Homomorphismus [mm] $\varphi|_E [/mm] : E [mm] \to [/mm] E$.

Nun ist allerdings auch [mm] $\varphi^{-1} [/mm] : L [mm] \to [/mm] L$ ein $K$-Automorphismus von $L$, womit du ebenfalls einen $K$-Homomorphismus [mm] $\varphi^{-1}|_E [/mm] : E [mm] \to [/mm] E$ erhaelst.

Du kannst leicht nachrechnen, dass dieser das Inverse von [mm] $\varphi|_E [/mm] : E [mm] \to [/mm] E$ ist, womit [mm] $\varphi|_E [/mm] : E [mm] \to [/mm] E$ ein Automorphismus ist.

LG Felix


Bezug
                
Bezug
Galoist. Automorphismen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Mo 01.12.2008
Autor: Fry

Verstanden ! Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]